Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Why an uncanny crystal change could laser design
by Staff Writers
Washington DC (SPX) Aug 29, 2016


These potassium diphosphate (KDP) crystals, which self-assemble in solution as hollow hexagonal rods, could find use in laser technology, particularly for fiber-optic communications. The scanning-electron image at right shows a crystal at higher resolution with scale added. Image courtesy L. Deng / NIST. For a larger version of this image please go here.

Laser applications may benefit from crystal research by scientists at the National Institute of Standards and Technology (NIST) and China's Shandong University. They have discovered a potential way to sidestep longstanding difficulties with making the crystals that are a crucial part of laser technology. But the science behind their discovery has experts scratching their heads.

The findings, published in Science Advances, suggest that the relatively large crystals used to change several properties of light in lasers - changes that are crucial for making lasers into practical tools - might be created by stacking up far smaller, rod-shaped microcrystals that can be grown easily and cheaply.

So far, the team's microcrystals outperform conventional crystals in some ways, suggesting that harnessing them could signal the end of a long search for a fast, economical way to develop large crystals that would otherwise be prohibitively expensive and time-consuming to create. But the microcrystals also challenge conventional scientific theory as to why they perform as they do.

The color you see in a laser's light is often different than the one it initially generates. Many lasers create infrared light, which then passes through a crystal converting its energy - and therefore its wavelength - to light of a visible color like green or blue.

Frequently, that crystal is made of potassium diphosphate (KDP), a common material that has properties that make it invaluable: Not only can a KDP crystal alter the light's color, but it also can act as a switch that changes the light's polarization (the direction in which its electric field vibrates) or prevent it from passing through the crystal until just the right moment. The data carried by laser light through fiber-optic cables depends on the light's polarization, and many applications depend on a laser pulse's timing.

Small KDP crystals are easy to make, and these find use in pocket laser pointers and telecommunications systems alike. But for higher-energy applications, scientists have searched for decades for a way to make large, high-quality crystals that can survive repeated exposure to intense laser pulses, but a solution has remained elusive.

The team has found useful results by growing KDP crystals in solution. These crystals take the form of hexagonal-shaped hollow tubes and long rods just a few micrometers wide. Individually, these KDP microcrystals have an energy-conversion efficiency surpassing even the best KDP crystals under the same conditions, raising the possibility of directly growing crystals for use in telecommunications.

The team also suggests the rods could be stacked up like firewood, building a larger piece out of billions of the tiny filaments. Before they are stacked together they could be coated by a thin layer of conductive material that carries heat away, rendering them capable of handling repeated pulses of high-intensity laser light - potentially broadening their application range if a way can be found to stack them.

The mystery is why the microcrystals perform as they do. Basic physics says they shouldn't.

Conventional physics models indicate that an optical medium like a crystal must not be symmetric about its center if it is to convert energy efficiently, yet these microcrystals appear to break this rule.

"We've spoken to a number of experts in different fields worldwide, and none of them can explain it," says NIST physicist Lu Deng. "Currently no theory can explain the initial growth mechanism of this exotic crystal. It's challenging our current understanding in fields from crystallography to condensed matter physics."

While theory catches up with data, Deng said the team is concentrating on the engineering challenges of growing stackable microcrystal rods.

"We can grow more than 1,000 microstructures every 10 minutes or so on a single glass slide, so growing a large amount is not a problem," he said. "What we need to figure out is how to grow a large fraction of them with nearly uniform cross-sections since that will be important in the final assembly stage."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
National Institute of Standards and Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
From unconventional laser beams to a more robust imaging wave
Rochester NY (SPX) Aug 10, 2016
Here's the scene: a suspicious package is found in a public place. The police are called in and clear the area. Forced to work from a distance and unable to peer inside, they fear the worst and decide to detonate the package. New research at the University of Rochester might help authorities in the not-too-distant future be better informed in tackling such situations and do so more safely. ... read more


TECH SPACE
Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

TECH SPACE
NASA Awards Launch Services Contract for Mars 2020 Rover Mission

Year-long simulation of humans living on Mars ends in Hawaii

Boredom was hardest part of yearlong dome isolation

Test for damp ground at Mars' seasonal streaks finds none

TECH SPACE
Grandpa astronaut breaks US space record

35 years later Voyager's legacy continues at Saturn

Chinese sci-fi prepares to master the universe

China opens longest glass bottom bridge in world

TECH SPACE
China Sends Country's Largest Carrier Rocket to Launch Base

China unveils Mars probe, rover for ambitious 2020 mission

China Ends Preparatory Work on Long March 5 Next-Generation Rocket Engine

China launches hi-res SAR imaging satellite

TECH SPACE
Space Station's orbit adjusted Wednesday

Astronauts Relaxing Before Pair of Spaceships Leave

'New port of call' installed at space station

US astronauts prepare spacewalk to install new docking port

TECH SPACE
Russian Carrier Rocket for Sea Launches Will Replace Ukraine's Zenit

SpaceX's Dragon cargo ship splashes down in Pacific

Intelsat "doubles down" with Arianespace for an Ariane 5 dual success

Kourou busy with upcoming Arianespace missions

TECH SPACE
Rocky planet found orbiting habitable zone of nearest star

A new Goldilocks for habitable planets

Venus-like Exoplanet Might Have Oxygen Atmosphere, but Not Life

Brown dwarfs reveal exoplanets' secrets

TECH SPACE
Why an uncanny crystal change could laser design

NIST's compact gyroscope may turn heads

New 10-foot dish will connnect ASU researchers directly with satellites

Northrop Grumman to Provide Navigation System for German Satellite




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement