. 24/7 Space News .
SPACE SCOPES
Is Hitomi x-ray satellite a total lost
by Kevin Schawinski for The Conversation
Zurich, Switzerland (The Conversation) Apr 07, 2016


Perseus cluster of galaxies as seen by the Chandra X-ray Observatory. The X-rays come from million-degree gases around the galaxy cluster. Giant bubbles and cavities show where the supermassive black hole blasted energy into the gas. Image courtesy NASA/CXC/IoA/A.Fabian et al.

On February 16, the Japanese Space Agency (JAXA) successfully launched the ASTRO-H satellite from Tanegashima Space Center in Japan. The space telescope named Hitomi - "pupil" in Japanese - carried with it the hopes and dreams of astrophysicists from around the world.

Hitomi carried a number of scientific instruments, but the most revolutionary was a device called an X-ray microcalorimeter. Astrophysicists around the world were waiting with excitement for the first observations with this instrument, which was designed to see things like the million-degree gas sloshing around galaxy clusters stirred by relativistic jets from supermassive black holes.

But before anyone could see those first data from Hitomi, a possibly fatal misfortune struck. On March 26, while the spacecraft was executing its first test observations in orbit, JAXA lost contact. The U.S. Joint Space Operation Center detected five pieces of debris in the area and Hitomi's orbit suddenly changed.

What happened? We don't know. It's possible that a piece of space junk, or perhaps a micrometeorite, hit the spacecraft. Or maybe an onboard piece of equipment - a battery, a piece of scientific payload - failed and exploded. Signs point to the latter, since the spacecraft appears to be rapidly spinning. If an explosion caused a leak allowing, say, coolant to escape, this would spin up the spacecraft. X-ray astronomy dreams

Astronomers use the electromagnetic spectrum - including visible or infrared light - to study stars, planets, galaxies and the universe as a whole. They have long used prisms and grisms to split the light into its components. Rather than just taking images, this spectroscopy allows astrophysicists to study the composition of objects in space and the conditions of the material that is emitting the light, including whether and how it moves around. Optical spectroscopy, for example, lets astronomers see how the stars in a galaxy move around and how old they are.

X-rays are near the far end of the eletromagnetic spectrum beyond the farthest ultraviolet, but not as far as Gamma rays.

Thanks to our atmosphere, X-rays from space don't reach us at the Earth's surface. That's actually good news, since we'd all be in trouble: being constantly bombarded by X-rays leads to DNA damage, cancer and worse. But this also means we need to go to space to see X-rays from the cosmos. Astrophysicists have long wanted to put an X-ray high-resolution spectrograph into space - but the goal has so far remained elusive.

X-ray astronomy got its start in the 1950s and '60's with the first X-ray telescopes being launched on sounding rockets and balloons. Space telescopes followed, and with these, astronomers could take X-ray images or low-resolution spectra and made amazing discovery after discovery: the first black hole in our Milky Way galaxy; clusters of galaxies bathed in the glow of million-degree gas; all the way to a mysterious X-ray "background."

Soon after its launch in 1999, the Chandra X-ray Observatory finally resolved that X-ray background into a multitude of growing supermassive black holes in the early universe.

But the history of X-ray spectroscopic measurements in space is somewhat star-crossed. Before Hitomi was ASTRO-EII, known as Suzaku. Suzaku carried an X-ray microcalorimeter, but just a few weeks after launch, the instrument's cooling system suffered a series of failures and lost all its coolant. Before that came ASTRO-E, which was lost during launch in 2000 when its M-V-4 rocket failed. And before that, NASA planned to fly an X-ray microcalorimeter on a mission called AXAF-S, which got canceled.

Visions of the hot and energetic universe
With a true high-resolution X-ray spectrograph in space we could finally see so much: we could see the motion, the ebb and flow, of million-degree gas sloshing around galaxy clusters as the supermassive black hole in the galaxy at the center of the cluster shoots unimaginable amounts of energy into it with its relativistic jets.

We could watch the final gasps of matter as it falls into a feeding quasar, and see the distortion of spacetime itself due to Einstein's general relativity. We could search for the "missing matter" which we believe must lurk in the vicinity of galaxies.

The next chance to fly such an instrument isn't for a while. Astronomers can next pin their hopes on the ATHENA satellite, which the European Space Agency has selected as a flagship large-class mission. ATHENA will carry two X-ray instruments, a Wide Field Imager for taking large X-ray images of the sky, and a true X-ray calorimeter which will let us do high-resolution X-ray spectroscopy.

But ATHENA is currently not slated to launch until 2028, and no spacecraft has ever launched on time.

In space, no one can hear you ping
There is still hope for Hitomi: it may be only "mostly dead," On March 30, JAXA received two pings from the damaged satellite. This means that at least some onboard systems were still running. Perhaps over a few months, Hitomi can be recovered and still do science.

JAXA has an incredible record in saving troubled spacecraft: they lost and reestablished contact with Hayabusa as it was trying to land on an asteroid, and when Akatsuki failed to enter its planned orbit around Venus, JAXA spent five years flying it through the solar system for a second, successful attempt.

The good news is that before its troubles, Hitomi did take some observations and sent them back to Earth... enough to amaze astrophysicists, but far too little to answer all the questions we have.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
JAXA
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE SCOPES
Earth-Space Telescope System Produces Hot Surprise
Socorro NM (SPX) Mar 30, 2016
Astronomers using an orbiting radio telescope in conjunction with four ground-based radio telescopes have achieved the highest resolution, or ability to discern fine detail, of any astronomical observation ever made. Their achievement produced a pair of scientific surprises that promise to advance the understanding of quasars, supermassive black holes at the cores of galaxies. The scientis ... read more


SPACE SCOPES
The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

Earth's moon wandered off axis billions of years ago

SPACE SCOPES
Help keep heat on Mars Express through data mining

Scientists find Mars surface replica in India

Ancient Mars bombardment likely enhanced life-supporting habitat

Rover takes on steepest slope ever tried on Mars

SPACE SCOPES
Silicon Beach: LA tech hub where the sun always shines

New DNA/RNA Tool to Diagnose, Treat Diseases

ASU to develop the next generation science education courseware for NASA

Space-Related Budget Requests for FY17

SPACE SCOPES
Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

SPACE SCOPES
Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

Cargo ship reaches space station on resupply run

Unmanned Cygnus cargo ship launches to ISS on resupply run: NASA

SPACE SCOPES
Atlas V OA-6 Anomaly Status

NASA Progresses Toward SpaceX Resupply Mission to Space Station

Reusing Falcon 9 boosters would slash costs by 30 percent

Water System Tested on Crew Access Arm at KSC

SPACE SCOPES
Planet formation in Earth-like orbit around a young star

NASA's Spitzer Maps Climate Patterns on a Super-Earth

'Smoothed' light will help search for Earth's twins

Map of rocky exoplanet reveals a lava world

SPACE SCOPES
Record-breaking steel could be used for body armor, shields for satellites

New understanding of liquid to solid state transition discovered

Physicists 'undiscovered' technetium carbide

Drexel rolls out method for making the invisible brushes that repel dirt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.