Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
'White Widow' Scenario for Birth of Type Ia Supernovae
by Staff Writers
Austin TX (SPX) Oct 26, 2012


Supernova remnant 0509-67.5 was searched for a left-behind partner star without success.

J. Craig Wheeler has studied the exploding stars called supernovae for more than four decades. Now he has a new idea on the identity of the "parents" of one of the most important types of supernovae - the Type Ia, those used as "standard candles" in cosmology studies that led to the discovery of dark energy, the mysterious force causing the universe's expansion to speed up.

Wheeler lays out his case for supernova parentage in the current issue of The Astrophysical Journal [http://dx.doi.org/10.1088/0004-637X/758/2/123]. He explains why he thinks the parents of Type Ia could be a binary star made up of white dwarf star (the burnt-out remnant of a Sun-like star) and a particular type of small star called an "M dwarf."

In the paper, he explains that current theories for Type Ia parents don't correctly match up with telescope data on actual supernovae.

There are two main models today that attempt to explain how Type Ia supernovae are born. One is called a "single-degenerate model," in which a binary star is made up of a degenerate, or dead star, called a white dwarf paired with a less evolved star. Over time, as the stars orbit each other, the white dwarf's gravity siphons gas from the atmosphere of its partner star until the white dwarf becomes so massive and dense that it ignites, triggering an immense thermonuclear explosion.

Wheeler wrote the first scientific paper invoking this idea in 1971. Astronomers have been trying to identify what type of star the partner must be ever since.

The other, more recent, theory for building a Type Ia supernova is known as the "double-degenerate model." Here, it takes two white dwarfs in a binary system spiraling together and colliding to create a Type Ia supernova.

The telescope data support neither completely, Wheeler says.

Astronomers have carefully observed supernovae for decades. In the best-case scenario, a supernova is watched from the time it is discovered and becomes extremely bright, until it fades from view. Its light signature, or spectrum, changes over that time. Any models of supernova parents must reproduce an evolving spectrum that matches that of actual supernovae.

"I believe that the spectra have to be respected," Wheeler said. "The really high-order constraint [on a supernova model] is to get the spectral evolution correct. That is, you've got to get all the bumps and wiggles, and they've got to be in the right place at the right times."

Telescope observations in the last few years have considerably narrowed the possibilities on which models work, he said, "putting tighter and tighter constraints on whether any companion star exists and what kind of star it can be."

Now, Wheeler thinks maybe a new twist on the single-degenerate model can fill the bill. He says pairing the white dwarf with an M dwarf could do the trick.

"M dwarfs are the most common star in the galaxy, and white dwarfs are the second-most common star in the galaxy," he said. "And there's lots of M dwarf-white dwarf binary systems. Do they make Type Ia supernovas? That's another question."

In the paper, he lays out evidence why he thinks the M dwarf is a good candidate:

First, M dwarfs are dim. In recent years, astronomers using large telescopes have looked hard at the gaseous remnants left behind by Type Ia supernovae for the partner star that would be left behind after the white dwarf detonated. "One thing blows up as a supernova, the other thing's got to be left behind," Wheeler said. "Where is it? We don't see it."

Small, red M dwarfs are dim enough to work - even the most massive M dwarf would not show up on Hubble Space Telescope observations. And it's even possible, Wheeler said, that the white dwarf could have devoured the entire M dwarf before the white dwarf exploded. M dwarfs don't have heavy cores to leave behind.

Wheeler calls this scenario a "white widow system," a play on words referencing the stellar binaries known as "black widow systems," in which a neutron star eats its stellar companion. In the "white widow" case, the predator is a white dwarf.

The second reason the M dwarf is likely the white dwarf's co-parent in producing Type Ia supernovae is that M dwarfs are magnetic. "They flare, they do all sorts of crazy things," Wheeler said. His thought experiment supposes that the white dwarf is magnetic as well. "That's the thrust of the paper, to think about what happens if both stars are magnetic," he said.

Though astronomers studying other types of stars have included magnetic fields in their theories, "it's just a completely different part of parameter space to bring in the role of magnetic fields in the supernova game," Wheeler said. But "it is the way nature works. Things are magnetic. The Sun is magnetic; the Earth is magnetic. The magnetic fields are there. Are they big enough to do something?"

If a magnetic white dwarf and a magnetic M dwarf are in a binary star pair, Wheeler said, their opposite magnetic poles would attract, and they would become tidally and magnetically locked into a rotation in which the same side of each always faces the other and the magnetic poles point directly at one another.

In this case, the white dwarf still pulls material off of the M dwarf, but the material would build up on a single spot on the white dwarf that pointed right back at the M dwarf, irradiating it and driving off even more mass, consuming the M dwarf and leading to an eventual explosion.

.


Related Links
McDonald Observatory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
A black widow's Tango Mortale in gamma-ray light
Hanover, Germany (SPX) Oct 26, 2012
Pulsars are the compact remnants from explosions of massive stars. Some of them spin around their own axis hundreds of times per second, emitting beams of radiation into space. Until now, they could only be found through their pulsed radio emissions. Now, scientists at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute/AEI) in Hanover assisted by the Max Planck I ... read more


STELLAR CHEMISTRY
NASA's LADEE Spacecraft Gets Final Science Instrument Installed

Astrium presents results of its study into automatic landing near the Moon's south pole

European mission to search for moon water

Model reconciles Lunar Earth composition with giant impact theory

STELLAR CHEMISTRY
Opportunity Undertakes Survey Drives Of Local Area

Assessing Drop-Off to Mars Rover's Observation Tray

Valles Marineris - the largest canyon in the Solar System

Curiosity Rover Collects Fourth Scoop of Martian Soil

STELLAR CHEMISTRY
Space daredevil Baumgartner is 'officially retired'

NASA must reinvest in nanotechnology research, according to new Rice University paper

Austrian space diver no stranger to danger

Baumgartner feat boosts hopes for imperilled astronauts

STELLAR CHEMISTRY
China to launch 11 meteorological satellites by 2020

China makes progress in spaceflight research

Patience for Tiangong

China launches civilian technology satellites

STELLAR CHEMISTRY
New crew docks with ISS: Russia

ISS Crew Gets Ready for New Expedition 33 Trio

New ISS Crew Confirmed

Russia launches three astronauts to ISS

STELLAR CHEMISTRY
Pleiades 1B joins its launcher at the Spaceport for Arianespace's Soyuz mission in November

S. Korea readies third bid to join global space club

Brazil eyes closer space cooperation with Ukraine

S. Korea plans third rocket launch bid Friday

STELLAR CHEMISTRY
New Study Brings a Doubted Exoplanet 'Back from the Dead'

New small satellite will study super-Earths for ESA

Most Planetary Systems are 'Flatter than Pancakes'

Glitch could end NASA planet search

STELLAR CHEMISTRY
A new take on the Midas touch - changing the colour of gold

Northrop Grumman Matures Laser Threat Terminator Technology to Address Emerging Threats

US DoE's Ames Laboratory improving process to recycle rare-earth materials

Droplet response to electric voltage in solids exposed




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement