. 24/7 Space News .
STELLAR CHEMISTRY
When is a nova not a nova? When a white dwarf and a brown dwarf collide
by Staff Writers
Newcastle UK (SPX) Oct 09, 2018

illustration only

Researchers from Keele University have worked with an international team of astronomers to find for the first time that a white dwarf and a brown dwarf collided in a 'blaze of glory' that was witnessed on Earth in 1670.

Using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, the international team of astronomers, including workers from the Universities of Keele, Manchester, South Wales, Arizona State, Minnesota, Ohio State, Warmia and Mazury, and the South African Astronomical Observatory, found evidence that a white dwarf (the remains of a star like the Sun at the end of its life) and a brown dwarf (a 'failed' star without sufficient mass to sustain thermonuclear fusion) collided in a short-lived blaze of glory that was witnessed on Earth in 1670 as Nova Cygni - 'a new star below the head of the Swan.'

In July of 1670, observers on Earth witnessed a 'new star', or nova, in the constellation Cygnus - the Swan. Where previously there was no obvious star, there abruptly appeared a star as bright as those in the Plough, that gradually faded, reappeared, and finally disappeared from view.

Modern astronomers studying the remains of this cosmic event initially thought it was triggered by the merging of two main-sequence stars - stars on the same evolutionary path as our Sun. This so-called 'new star' was long referred to as 'Nova Vulpeculae 1670', and later became known as CK Vulpeculae.

However, we now know that CK Vulpeculae was not what we would today describe as a 'nova', but is in fact the merger of two stars - a white dwarf and a brown dwarf.

By studying the debris from this explosion - which takes the form of dual rings of dust and gas, resembling an hourglass with a compact central object - the research team concluded that a brown dwarf, a so-called failed star without the mass to sustain nuclear fusion, had merged with a white dwarf.

Professor Nye Evans, Professor of Astrophysics at Keele University and co-author on the paper appearing in the Monthly Notices of the Royal Astronomical Society explains:

"CK Vulpeculae has in the past been regarded as the oldest 'old nova'. However, the observations of CK Vulpeculae I have made over the years, using telescopes on the ground and in space, convinced me more and more that this was no nova. Everyone knew what it wasn't - but nobody knew what it was! But a stellar merger of some sort seemed the best bet.

"With our ALMA observations of the exquisite dusty hourglass and the warped disc, plus the presence of lithium and peculiar isotope abundances, the jig-saw all fitted together: in 1670 a brown dwarf star was 'shredded' and dumped on the surface of a white dwarf star, leading to the 1670 eruption and the hourglass we see today."

The team of European, American and South African astronomers used the Atacama Large Millimeter/submillimeter Array to examine the remains of the merger, with some interesting findings. By studying the light from two, more distant, stars as they shine through the dusty remains of the merger, the researchers were able to detect the tell-tale signature of the element lithium, which is easily destroyed in stellar interiors.

Dr Stewart Eyres, Deputy Dean of the Faculty of Computing, Engineering and Science at the University of South Wales and lead author on the paper explains:

"The material in the hourglass contains the element lithium, normally easily destroyed in stellar interiors. The presence of lithium, together with unusual isotopic ratios of the elements C, N, O, indicate that an (astronomically!) small amount of material, in the form of a brown dwarf star, crashed onto the surface of a white dwarf in 1670, leading to thermonuclear 'burning', an eruption that led to the brightening seen by the Carthusian monk Anthelme and the astronomer Hevelius, and in the hourglass we see today."

Professor Albert Zijlstra, from The University of Manchester's School of Physics and Astronomy, co-author of the study, says:

"Stellar collisions are the most violent events in the Universe. Most attention is given to collisions between neutrons stars, between two white dwarfs - which can give a supernova - and star-planet collisions.

"But it is very rare to actually see a collision, and where we believe one occurred, it is difficult to know what kind of stars collided. The type we believe that happened here is a new one, not previously considered or ever seen before. This is an extremely exciting discovery."

Professor Sumner Starrfield, Regents' Professor of Astrophysics at Arizona State University comments:

"The white dwarf would have been about 10 times more massive than the brown dwarf, so as the brown dwarf spiralled into the white dwarf it would have been ripped apart by the intense tidal forces exerted by the white dwarf. When these two objects collided, they spilled out a cocktail of molecules and unusual element isotopes.

"These organic molecules, which we could not only detect with ALMA, but also measure how they were expanding into the surrounding environment, provide compelling evidence of the true origin of this blast. This is the first time such an event has been conclusively identified.

"Intriguingly, the hourglass is also rich in organic molecules such as formaldehyde (H2CO), methanol (CH3OH) and methanamide (NH2CHO). These molecules would not survive in an environment undergoing nuclear fusion and must have been produced in the debris from the explosion. This lends further support to the conclusion that a brown dwarf met its demise in a star-on-star collision with a white dwarf."

Since most star systems in the Milky Way are binary, stellar collisions are not that rare, the astronomers note.

Professor Starrfield adds:

"Such collisions are probably not rare and this material will eventually become part of a new planetary system, implying that they may already contain the building-blocks of organic molecules as they are forming."

Research paper


Related Links
Keele University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Astrophysicists measure precise rotation pattern of Sun-like stars for the first time
Abu Dhabi (SPX) Sep 28, 2018
Sun-like stars rotate up to two and a half times faster at the equator than at higher latitudes, a finding by researchers at NYU Abu Dhabi that challenges current science on how stars rotate. Until now, little was known about the precise rotational patterns of Sun-like stars, only that the equator spins faster than at higher latitudes, similar to the Sun. Scientists at the NYU Abu Dhabi Center for Space Science used observations from NASA's Kepler mission and asteroseismology - the study of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Space Station Crew Returns to Earth, Lands Safely in Kazakhstan

First UAE Astronaut to Fly to ISS for 11-Day Mission on April 5, 2019

NASA skeptical on sabotage theory after mystery ISS leak

Russia to help India in its first manned space mission

STELLAR CHEMISTRY
First SpaceX mission with astronauts set for June 2019: NASA

SpaceX uses dumping to drive Russia out of space launch market claims Roscosmos

SLS chief engineer driven by 'challenge' of building rocket

Nucleus completes successful first launch

STELLAR CHEMISTRY
Curiosity Rover to Temporarily Switch 'Brains'

Curiosity rover operating on backup computer during repairs to main processor

Opportunity Remains Silent For Over Three Months

Software finds the best way to stick a Mars landing

STELLAR CHEMISTRY
China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

STELLAR CHEMISTRY
Britain and Australia enter into space agreement

See the future at ESA's IAC Start-up Space Zone

Ten years catching rocket signals

Thinkom develops enterprise user terminal for Telesat's LEO constellation

STELLAR CHEMISTRY
Researchers discover highly active organic photocatalyst

NTU Singapore scientists develop smart technology for synchronized 3D printing of concrete

Brazil says Norsk Hydro lacked waste license for stalled plant

Reaction of a quantum fluid to photoexcitation of dissolved particles observed for the first time

STELLAR CHEMISTRY
Liquid crystals and the origin of life

'Spacesuits' protect microbes destined to live in space

Astronomers find first evidence of possible moon outside our Solar System

New tool helps scientists better target the search for alien life

STELLAR CHEMISTRY
While seeking Planet X, astronomers find a distant solar system object

New Horizons sets up for New Year's flyby of Ultima Thule

Extremely distant Solar System object found

New Horizons Team Rehearses For New Year's Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.