. 24/7 Space News .
STELLAR CHEMISTRY
What Swings a Star Around - Another Star or a Distant Planet?
by Staff Writers
Tokyo, Japan (SPX) Oct 07, 2016


Periodic change in the radial velocity of the primary star shown left is the strong signature of a planet. When the companion object is far way (farther than 10 astronomical units), the orbital period is so long that the radial velocity shows a linear change as shown in the right panel. Image courtesy NAOJ. For a larger version of this image please go here.

An international team of astronomers using the Subaru Telescope and led by a graduate student member of SOKENDAI (The Graduate University of Advanced Studies, Japan) has discovered companions circling "intermediate-mass" stars. These are stars that are heavier than the Sun and the companions were thought to be either planets or possibly small stars. The excellent performance of the Subaru Telescope enabled the detection of faint objects circling around three of six bright stars surveyed.

The target objects ? Hya, HD 5608, and HD 109272 have companion stars (Figure 1) called ? Hya B, HD 5608 B, and HD 109272 B. The other three stars surveyed did not have them. Comparison of these results with the frequency of companions predicted by planet formation theory is a crucial step in better understanding how planets are formed.

Since the first discovery of an exoplanet in 1995, there have been thousands of exoplanet candidates found. More than 3,000 have been confirmed as planets. Compared to the planets of the solar system, these distant worlds demonstrate a wide diversity of environments.

The discovery of new planets beyond our own solar neighborhood has required frequent revisions of planetary formation theory. Among the criteria that astronomers consider is the question of how many planets of what mass range exist at what distances from their primary stars. In particular, the frequency with which these distant planets form can be a good test for theories about when and where they exist.

Planets are difficult to detect because they are smaller than their stars and are often hidden by the star's glow, particularly if they orbit close to their stars. The Radial Velocity (RV) detection method (Note 1) has been successfully used to detect many exoplanets at varying distances from their stars.

However, it is also a struggle to spot objects that lie too far away from their primaries. These distant objects are difficult enough to even find, let alone determine whether they are planets or another star. If an object is far away from its star, its orbital period can be more than 10 years long. At such distances and periods, the RV method is very difficult to use.

Short observation times make it difficult to "tease out" the existence of a distant companion due to the longer time it takes to make one orbit. The transit method, which is the other commonly used way to find planets, (Note 2) also faces similar limitations in the search for distant planets, despite recent contributions to exoplanet discoveries using this method.

The presence of a planet more than 10 astronomical units (AU, 1 AU is the distance between the Earth and the Sun) from its star, with an orbital period of several decades remained unaccounted for in recent surveys. To solve this problem, the research team added a direct imaging approach to the RV method.

Direct Imaging Method is a Powerful Tool
Direct imaging is a very straightforward method. Astronomers take pictures of the light from the faint planets. If the faint object is far enough from the bright star, detection is easier. Or, in some cases, a companion star brighter than planets will be detectable. Therefore, this method enables an identification of the object that is causing the long-term trend found via the RV method.

A group of researchers from Tokyo Institute of Technology has been surveying the sky for exoplanets using the RV method for more than a decade using a telescope at Okayama Astrophysical Observatory, National Astronomical Observatory of Japan. Their targets are stars with mass 1.5 to 5 times heavier than the Sun.

Already more than 30 objects in their target list are known to have planets or brown dwarfs with relatively short orbital periods. They have also found some unknown objects that show a long-term orbital trend - that is, an orbit so long that it indicates the object lies at a great distance from the primary.

The research team picked six intermediate-mass giant stars that show this long-term trend, and used the High Contrast Instrument for the Subaru Next Generation Adaptive Optics (HiCIAO) imager at the Subaru Telescope as part of the SEEDS project (Strategic Explorations of Exoplanets and Disks with Subaru). The HiCIAO coronagraph mask blocks light from the primary star, which greatly helps in the detection of fainter objects around a star.

They discovered companion stars around three stars - ? Hydra, HD 5608, and HS 109272. The other three objects - (iota) Draconis, 18 Delphinus, and HD 14067 - have companion stars no heavier than one hundredth of the mass of the Sun.

Further analysis about the companion stars, done by combining the RV data and the direct imaging data, confirmed that these companions cause the long-term trend in the radial velocity of the primary stars.

Estimates of the maximum mass of the companion stars that can possibly accompany ? Draconis and HD 14067 is less than a tenth of the Sun's mass. This is much lower than the 1.5 to 5-solar-mass-estimates the team expected. These findings leave only 18 Delphinus as a candidate that might have a distant planet below the current detection limit.

In order to improve the detection limit for the companion objects the research team plans to use the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument on the Subaru Telescope.

This is an upgrade of HiCIAO and is capable of finding objects closer to their primary stars. The team members hope to increase the cases of the companion objects that match the expected estimated mass. The continued effort in direct imaging of the stars showing a long-term radial velocity change will surely result in the discovery of many more distant. This will allow the team to establish the population distribution of companion objects around the stars.

The team's findings were published in the Astrophysical Journal in its July 10, 2016 issue. The title of the paper is "High-contrast Imaging of Intermediate-mass Giants with Long-term Radial Velocity Trends" by T. Ryu et al. Grant-in-Aid JP25247026?JP15H02063?JP22000005 supported this study.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Astronomical Observatory Of Japan
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Discovery of an extragalactic hot molecular core
Sendai, Japan (SPX) Oct 12, 2016
Astronomers have discovered a 'hot molecular core,' a cocoon of molecules surrounding a newborn massive star, for the first time outside our Galaxy. The discovery, which marks the first important step for observational studies of extragalactic hot molecular cores and challenges the hidden chemical diversity of our universe, appears in a paper in The Astrophysical Journal Volume 827. The sc ... read more


STELLAR CHEMISTRY
A facelift for the Moon every 81,000 years

Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

STELLAR CHEMISTRY
Schiaparelli readied for Mars landing

Opportunity at First Science Spot of its 10th Extended Mission

NASA's Opportunity Rover to Explore Mars Gully

How Mars' moon Phobos came to look like the Death Star

STELLAR CHEMISTRY
Growing Interest: Students Plant Seeds to Help NASA Farm in Space

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Students team up with NASA for space coms and navigation

STELLAR CHEMISTRY
Closing windows on Shenzhou 11

China getting ready for Shenzhou 11 launch

China to launch world's first X-ray pulsar navigation satellite

From nothing to glory in six decades - China's space program

STELLAR CHEMISTRY
Hurricane Nicole delays next US cargo mission to space

Roscosmos Sets New Date for Soyuz MS-02 Launch to Orbital Station

Japan Schedules Cargo Transporter Launch to ISS for December 9

Automating sample testing thanks to space

STELLAR CHEMISTRY
Orbital ATK and Stratolaunch partner to offer competitive launch opportunities

Trusted Ariane 5 lays foundations for Ariane 6

ULA gets $860 million contract modification for expendable launch vehicle

Ariane 5 reaches the launch zone for Arianespace's October 4 liftoff

STELLAR CHEMISTRY
Stars with Three Planet-Forming Discs of Gas

TESS will provide exoplanet targets for years to come

The death of a planet nursery?

Protoplanetary Disk Around a Young Star Exhibits Spiral Structure

STELLAR CHEMISTRY
Technique mass-produces uniform, multilayered particles

A breakthrough in the study of how things break, bend and deform

TES team evaluates new data collection method after age-related issue

NASA Offers Prize Money for Winning 3D-Printed Habitat Ideas









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.