Subscribe free to our newsletters via your
. 24/7 Space News .




TECTONICS
Western Indian Ocean earthquake and tsunami hazard potential greater than previously thought
by Staff Writers
Southampton, UK (SPX) May 15, 2013


The location of the Makran subduction zone of Pakistan and Iran and locations of recorded earthquakes including the 1945 magnitude 8.1 earthquake (red dot to the north indicates the 1947 magnitude 7.3 earthquake). The profile for the thermal modelling of this study is the N-S trending black line, with distance given along the profile from the shallowest part of the subduction zone in the south (0 kilometers) to the most northern potential earthquake rupture extent (350 kilometers). Credit: University of Southampton Ocean and Earth Science.

Earthquakes similar in magnitude to the 2004 Sumatra earthquake could occur in an area beneath the Arabian Sea at the Makran subduction zone, according to recent research published in Geophysical Research Letters.

The research was carried out by scientists from the University of Southampton based at the National Oceanography Centre Southampton (NOCS), and the Pacific Geoscience Centre, Natural Resources Canada.

The study suggests that the risk from undersea earthquakes and associated tsunami in this area of the Western Indian Ocean - which could threaten the coastlines of Pakistan, Iran, Oman, India and potentially further afield - has been previously underestimated. The results highlight the need for further investigation of pre-historic earthquakes and should be fed into hazard assessment and planning for the region.

Subduction zones are areas where two of the Earth's tectonic plates collide and one is pushed beneath the other. When an earthquake occurs here, the seabed moves horizontally and vertically as the pressure is released, displacing large volumes of water that can result in a tsunami.

The Makran subduction zone has shown little earthquake activity since a magnitude 8.1 earthquake in 1945 and magnitude 7.3 in 1947. Because of its relatively low seismicity and limited recorded historic earthquakes it has often been considered incapable of generating major earthquakes.

Plate boundary faults at subduction zones are expected to be prone to rupture generating earthquakes at temperatures of between 150 and 450 C. The scientists used this relationship to map out the area of the potential fault rupture zone beneath the Makran by calculating the temperatures where the plates meet. Larger fault rupture zones result in larger magnitude earthquakes.

"Thermal modelling suggests that the potential earthquake rupture zone extends a long way northward, to a width of up to 350 kilometres which is unusually wide relative to most other subduction zones," says Gemma Smith, lead author and PhD student at University of Southampton School of Ocean and Earth Science, which is based at NOCS.

The team also found that the thickness of the sediment on the subducting plate could be a contributing factor to the magnitude of an earthquake and tsunami there.

"If the sediments between the plates are too weak then they might not be strong enough to allow the strain between the two plates to build up," says Smith. "But here we see much thicker sediments than usual, which means the deeper sediments will be more compressed and warmer. The heat and pressure make the sediments stronger. This results in the shallowest part of the subduction zone fault being potentially capable of slipping during an earthquake.

"These combined factors mean the Makran subduction zone is potentially capable of producing major earthquakes, up to magnitude 8.7-9.2. Past assumptions may have significantly underestimated the earthquake and tsunami hazard in this region."

Smith, G.L., McNeill, L.C., Wang, K., He, J., and Henstock, T.J., 2013, Thermal structure and megathrust seismogenic potential of the Makran subduction zone: Geophys. Res. Lett., 40, doi:10.1002/grl.50374.

.


Related Links
National Oceanography Centre, Southampton (UK)
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECTONICS
After a violent youth, Earth said getting calmer in middle age
Sydney (UPI) May 7, 2013
Earth endured a tectonic upheaval 1.1 billion years ago that saw the world's continents collide and form a single supercontinent, Australian researchers say. It was the most active period of tectonic motions in Earth's history but the globe has been getting calmer since, they said. Martin Van Kranendonk of the University of New South Wales and Christopher Kirkland of the Geologic ... read more


TECTONICS
Where on Earth did the moon's water come from

Water on moon, Earth have a common source

Northrop Grumman Completes Lunar Lander Study for Golden Spike Company

Scientists Use Laser to Find Soviet Moon Rover

TECTONICS
NASA Curiosity Rover Team Selects Second Drilling Target on Mars

Opportunity Making Smallest Turn Yet, As Dust Storm Affects Rover

More than 78,000 people apply for one-way trip to Mars

Austria Aims For Mars Via Morocco

TECTONICS
Danish Space Venture ready for lift off

Researchers use graphene quantum dots to detect humidity and pressure

Outside View: Patents laws and suffering innovators

Glow-in-the-Dark Plants on the ISS

TECTONICS
China launches communications satellite

On Course for Shenzhou 10

Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

TECTONICS
ISS Statistics Tell the Story of Science in Orbit

Spaceman says goodbye to ISS with David Bowie classic

Canadian ISS astronaut returns to Earth a star

NASA astronauts on spacewalk to fix ammonia leak

TECTONICS
ATV Albert Einstein installed on Ariane 5 launcher

ILS and EchoStar Sign Launch Contract

NASA Awards Contract to Modify Mobile Launcher

Angara Rocket Launch Delayed to 2014

TECTONICS
Team Takes Part in Discovering New Planet

"Kepler's Dozen" - 13 Stories About Distant Worlds That Really Exist

NASA's Hubble Space Telescope Finds Dead Stars Polluted with Planet Debris

The Great Exoplanet Debate

TECTONICS
Scientists uncover the fundamental property of astatine, the rarest atom on Earth

Heady mathematics

Cornstarch proves to be worth its weight in gold

One order of steel; hold the greenhouse gases




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement