Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




ROBO SPACE
Wayne State University researcher's technique helps robotic vehicles find their way, help humans
by Staff Writers
Detroit MI (SPX) May 16, 2013


Weisong Shi's technique combines elements of common localization schemes for ground robotic vehicles, noting that each of those schemes has limitations. One scheme, using GPS alone, requires a lot of power. Another, radio-based positioning, requires proper calibration, a friendly environment and a set of external devices to generate or receive radio signals.

A Wayne State University researcher understands that the three most important things about real estate also apply to small ground robotic vehicles: location, location, location.

In a paper recently published in the journal IEEE Transactions on Parallel and Distributed Systems, Weisong Shi, Ph.D., associate professor of computer science in the College of Engineering, describes his development of a technique called LOBOT that provides accurate, real-time, 3-D positions in both indoor and outdoor environments.

The project was supported in part by the Wayne State Career Development Chair award, which gives Shi an opportunity to explore other areas after receiving tenure at WSU.

Scientists believe small ground robotic vehicles have great potential for use in situations that are either uncomfortable or too tedious for humans. For example, a robot may become part of industrial operations, assist senior citizens or serve as a tour guide for an exhibition center. Keeping a robot as small as possible enables it to move through narrow passageways, such as tunnels.

To complete such missions, a robotic vehicle often must obtain accurate localization in real time. But because frequent calibration or management of external facilities is difficult or impossible, a completely integrated self-positioning system is ideal. In addition, that system should work indoors or outdoors without human calibration or management and cost as little as possible.

In the paper titled "LOBOT: Low-Cost, Self-Contained Localization of Small-Sized Ground Robotic Vehicles," Shi and lead author Guoxing Zhan, one of his former graduate students, describe their technique, which combines a GPS receiver, local relative positioning based on a 3-D accelerometer, a magnetic field sensor and several motor rotation sensors.

The researchers noted that IEEE Transactions, the leading journal in the field, prominently featured their paper in its April 2013 issue. They are proud that their work was in progress before President Barack Obama's June 2011 announcement of the National Robotics Initiative, which seeks to accelerate the development and use of robots in the United States that work beside, or cooperatively with, people.

Shi's technique combines elements of common localization schemes for ground robotic vehicles, noting that each of those schemes has limitations. One scheme, using GPS alone, requires a lot of power. Another, radio-based positioning, requires proper calibration, a friendly environment and a set of external devices to generate or receive radio signals.

A third scheme, the use of vision techniques, relies heavily on recognition of objects or shapes and often has restricted spatial and visual requirements. Additionally, those objects and shapes must be captured and loaded into a computer which, like GPS, requires a lot of power.

A fourth scheme, inertial sensors, is part of the LOBOT design. Inertial sensors often are used to detect movement, but unlike radio- or vision-based techniques, operate independently of external environmental features and need no external reference. However, previous methods of maintaining their accuracy have resulted in high cost and calibration difficulty.

LOBOT uses a hybrid approach that localizes robotic vehicles with infrequent GPS use, a 3-D version of the accelerometer used in other inertial sensor systems and several motor rotation sensors - all installed on the robotic vehicle. All of the components are commercially available, with some costing as little as $20.

"Our goal has been to solve a problem by building a robot that leverages a number of existing technologies that can be used to address the problem of location, which is the key to many possible applications" Shi said.

"Because of the increasing number of things robots will be needed to do in the next five to 10 years, it is very important to develop a cheaper, low-powered approach that can address that problem as accurately as possible."

.


Related Links
Wayne State University
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ROBO SPACE
MakerBot and Robohand
New York NY (SPX) May 13, 2013
"Lend me a hand" has taken on a totally new meaning, thanks to the inspirational project called Robohand. Robohand is a story of collaboration from 10,000 miles apart between Richard Van As, a woodworker from Johannesburg, South Africa, and Ivan Owen, a theatrical prop designer from Seattle, Washington, and made possible via MakerBot's sharing website Thingiverse.com and 3D printing on a MakerBo ... read more


ROBO SPACE
Bright Explosion on the Moon

NASA says meteor impact on the moon glowed like a star

Where on Earth did the moon's water come from

Water on moon, Earth have a common source

ROBO SPACE
Nine-Year-Old Mars Rover Passes 40-Year-Old Record

NASA Probe Counts Space Rock Impacts on Mars

Living and Dying on Mars

NASA Curiosity Rover Team Selects Second Drilling Target on Mars

ROBO SPACE
Danish Space Venture ready for lift off

Researchers use graphene quantum dots to detect humidity and pressure

Outside View: Patents laws and suffering innovators

Glow-in-the-Dark Plants on the ISS

ROBO SPACE
China launches communications satellite

On Course for Shenzhou 10

Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

ROBO SPACE
Star Canadian spaceman back on Earth, relishing fresh air

ISS Statistics Tell the Story of Science in Orbit

Spaceman says goodbye to ISS with David Bowie classic

Canadian ISS astronaut returns to Earth a star

ROBO SPACE
O3b Networks' initial satellite is fueled for Arianespace's upcoming Soyuz launch from the Spaceport

Ariane Flight VA214's launch vehicle marks a preparation milestone

ILS Proton Successfully Launches EUTELSAT 3D for Eutelsat

Russia's Proton-M Spacecraft Set to Orbit French Satellite

ROBO SPACE
Critical Kepler Reaction Wheel Fails: Mission End In Sight

Sifting Through the Atmosphere's of Far-Off Worlds

New Method of Finding Planets Scores its First Discovery

Team Takes Part in Discovering New Planet

ROBO SPACE
SPUTNIX is granted a license for space activity

Stanford Engineers' New Metamaterial Doubles Up on Invisibility

Observation of second sound in a quantum gas

Northrop Grumman's SABR Brings Fifth Generation Fighter Radar Capabilities to F-16 Aircraft




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement