Subscribe free to our newsletters via your
. 24/7 Space News .




GPS NEWS
Using GPS Data To Model Effects Of Tidal Loads On Earth Surface
by Staff Writers
Pasadena CA (SPX) Apr 19, 2011


The outline of each ellipse represents the motion the ground makes as the earth flexes in response to the time and space dependent tides. There is an ellipse for each of the GPS sites used in the study, and the color indicates the amplitude of the tidal response movement. Credit: California Institute of Technology

For many people, Global Positioning System (GPS) satellite technology is little more than a high-tech version of a traditional paper map. Used in automobile navigation systems and smart phones, GPS helps folks find their way around a new neighborhood or locate a nearby restaurant. But GPS is doing much, much more for researchers at the California Institute of Technology (Caltech): it's helping them find their way to a more complete understanding of Earth's interior structure.

Up until now, the best way to explore Earth's internal structures-to measure geological properties such as density and elasticity-has been through seismology and laboratory experiments.

"At its most fundamental level, seismology is sensitive to specific combinations of these properties, which control the speed of seismic waves," says Mark Simons, professor of geophysics at Caltech's Seismological Laboratory, part of the Division of Geological and Planetary Sciences. "However, it is difficult using seismology alone to separate the effects that variations in density have from those associated with variations in elastic properties."

Now Simons and Takeo Ito, visiting associate at the Seismological Laboratory and assistant professor of earth and planetary dynamics at Nagoya University in Japan, are using data from GPS satellite systems in an entirely new way: to measure the solid earth's response to the movements of ocean tides-which place a large stress on Earth's surface-and to estimate separately the effects of Earth's density and the properties controlling response when a force is applied to it (known as elastic moduli).

Their work was published in this week's issue of Science Express.

By using measurements of Earth's movement taken from high-precision, continuously recording permanent GPS receivers installed across the western United States by the Plate Boundary Observatory (PBO), the researchers were able to observe tide-induced displacements-or movements of Earth's surface-of as little as one millimeter.

PBO is a component of EarthScope, a program that seeks to understand the processes controlling earthquakes and volcanoes by exploring the structure and evolution of the North American continent.

The team focused on understanding the properties of the asthenosphere, a layer of weak and viscous upper mantle that lies below Earth's crust, and used those measurements to build one-dimensional models of Earth's response to the diurnal tides in the western United States.

"The asthenosphere plays an important role in plate tectonics, as it lies directly under the plates," explains Ito. "The results of our study give us a better understanding of the asthenosphere, which in turn can help us understand how the plates move."

The models provided a look at the variations in density from Earth's surface down to a depth of about 400 kilometers. The researchers found that the density of the asthenosphere under the western United States and the eastern Pacific Ocean is abnormally low relative to the global average.

"Variations in density can either be caused by variations in the chemical makeup of the material, the presence of melt, or due to the effects of thermal expansion, whereby a given material will decrease in density as its temperature increases," explains Simons.

"In this study, we interpret the observed density anomaly to be due to the effects of elevated temperatures in the asthenosphere below the western United States and neighboring offshore areas. The required peak temperature anomaly would be about 300 degrees Celsius higher than the global average at those depths."

This type of data provides keys to understanding the chemical and mechanical dynamics of the planet, such as how heat flows through the mantle and how tectonic plates on Earth's surface are evolving.

"It is amazing that by measuring the twice-a-day centimeter-scale cyclic movement of Earth's surface with a GPS receiver, we can infer the variation of density 220 kilometers below the surface," says Simons.

Now that the researchers know it is possible to use GPS to derive measurements of internal Earth structures, they anticipate several new directions for this research.

"We hope to extend the observations to be global in scope, which may require temporary deployments of GPS in important areas that are typically tectonically bland-in other words, devoid of significant earthquakes and volcanoes-and thus do not have existing dense continuous GPS arrays already in place," says Simons.

Next steps may also include going beyond the current one-dimensional depth-dependent models to build 3-D models, and combining the GPS approach with more conventional seismic approaches.

"The method we developed for gathering data from GPS devices has significant potential for improving 3-D images of Earth's internal structure," says Ito.

.


Related Links
California Institute of Technology
GPS Applications, Technology and Suppliers






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








GPS NEWS
China launches navigation satellite
Shanghai (AFP) April 10, 2011
China on Sunday launched its eighth satellite orbiter as part of its navigation and positioning network, state media reported. A Long March-3A carrier rocket carrying the "Beidou," or Compass, navigation satellite took off before dawn from the Xichang satellite launch centre in southwest Sichuan province, the China Daily's website reported. The satellite launch will establish a basic nav ... read more


GPS NEWS
BRP To Contribute To Canadian Moon And Mars Exploration Programs

Naveen Jain Co-Founder And Chairman Of Moon Express

Project Morpheus To Begin Testing At NASA's Johnson Space Center

NASA Announces Winners Of 18th Annual Great Moonbuggy Race

GPS NEWS
A Tale Of Two Deserts

Mars Rover's 'Gagarin' Moment Applauded Exploration

Mars Flight Possible After 2035

Several Drives This Week Put Opportunity Over 17-Mile Mark

GPS NEWS
NASA Awards Next Set Of Commercial Crew Development Agreements

LockMart Commends Congressional Action On NASA Spacecraft

NASA spared cuts in US spending bill passage

NASA mission control named for Chris Kraft

GPS NEWS
Asia's star ever brighter in space

What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

GPS NEWS
Roberto Vittori's DAMA Mission To ISS

Northrop Grumman To Test Heat Management System On ISS

The MELFI Shuffle: Contingency Planning For Preserving Samples

Space Debris No Threat To ISS

GPS NEWS
India Starts Countdown For Launch Of Three Satellites

Kazakh Space Launch Project Delayed Until 2017

Putin Urges Ukraine To Join New Russian Space Center Project

Arianespace to launch ASTRA 2E Satellite

GPS NEWS
Titan-Like Exoplanets

A New Way To Find Planets

Telescope Ferrets Out Planet-Hunting Targets

White Dwarfs Could Be Fertile Ground For Other Earths

GPS NEWS
Don't stigmatise nuclear evacuees, says Japan govt

Robot readings in Japan nuke plant 'harsh'

Ball Aerospace Moves NPP Satellite To Thermal Vacuum Chamber For Final Testing

Technology addiction takes toll in Asia




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement