. 24/7 Space News .
ENERGY TECH
Using 3D X-rays to measure particle movement inside lithium ion batteries
by Staff Writers
Urbana IL (SPX) May 25, 2018

The most commonly used host particle material in commercial lithium ion batteries is graphite. The graphite particles expand as the lithium ions enter them during charging, and contract when the ions exit them during discharging.

Lithium ion batteries have come a long way since their introduction in the late 1990s. They're used in many everyday devices, such as laptop computers, mobile phones, and medical devices, as well as automotive and aerospace platforms, and others.

However, lithium ion battery performance still can decay over time, may not fully charge after many charge/discharge cycles, and may discharge quickly even when idle. Researchers at the University of Illinois applied a technique using 3D X-ray tomography of an electrode to better understand what is happening on the inside of a lithium ion battery and ultimately build batteries with more storage capacity and longer life.

Put simply, when a lithium battery is being charged, lithium ions embed themselves into host particles that reside in the battery anode electrode and are stored there until needed to produce energy during the battery discharge.

The most commonly used host particle material in commercial lithium ion batteries is graphite. The graphite particles expand as the lithium ions enter them during charging, and contract when the ions exit them during discharging.

"Every time a battery is charged, the lithium ions enter the graphite, causing it to expand by about 10 percent in size, which puts a lot of stress on the graphite particles," said John Lambros, professor in the Department of Aerospace Engineering and director of the Advanced Materials Testing and Evaluation Laboratory (AMTEL) at U of I.

"As this expansion-contraction process continues with each successive charge-discharge cycle of the battery, the host particles begin to fragment and lose their capacity to store the lithium and may also separate from the surrounding matrix leading to loss of conductivity.

"If we can determine how the graphite particles fail in the interior of the electrode, we may be able to suppress these problems and learn how to extend the life of the battery. So we wanted to see in a working anode how the graphite particles expand when the lithium enters them.

"You can certainly let the process happen and then measure how much the electrode grows to see the global strain - but with the X-rays we can look inside the electrode and get internal local measurements of expansion as lithiation progresses."

The team first custom built a rechargeable lithium cell that was transparent to X-rays. However, when they made the functioning electrode, in addition to graphite particles, they added another ingredient to the recipe - zirconia particles.

"The zirconia particles are inert to lithiation; they don't absorb or store any lithium ions," Lambros said. "However, for our experiment, the zirconia particles are indispensable: they serve as markers that show up as little dots in the X-rays which we can then track in subsequent X-ray scans to measure how much the electrode deformed at each point in its interior."

Lambros said internal changes in the volume are measured using a Digital Volume Correlation routine - an algorithm in a computer code that is used to compare the X-ray images before and after lithiation.

The software was created about 10 years ago by Mark Gates, a U of I computer science doctoral student co-advised by Lambros and by Michael Heath, who is in U of I's Department of Computer Science.

Gates improved upon existing DVC schemes by making some critical changes to the algorithm. Rather than only being able to solve very small-scale problems with a limited amount of data, Gates' version incorporates parallel computations that run different parts of the program all at the same time and can produce results in a short time, over a large number of measurement points.

"Our code runs much faster and instead of just a few data points, it allows us to get about 150,000 data points, or measurement locations, inside the electrode," Lambros said. "It also gives us an extremely high resolution and high fidelity."

Lambros said there are probably only a handful of research groups worldwide that use this technique.

"Digital Volume Correlation programs are now available commercially, so they may become more common," he said. "We've been using this technique for a decade now, but the novelty of this study is that we applied this technique that allows internal 3D measurement of strain to functioning battery electrodes to quantify their internal degradation."

Research paper


Related Links
University of Illinois College of Engineering
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
China's Tianqi raises profile as a top lithium supplier with stake in Chile's SQM
Santiago (AFP) May 17, 2018
China's Tianqi boosted its position as one of the world's largest suppliers of lithium, a key component in batteries for the booming electric car industry, after it agreed to acquire a stake in Chile's SQM. Tianqi Lithium will take a 24-percent stake in SQM in a deal worth $4.07 billion by buying up the shares owned by Canada's Nutrien, the companies announced Thursday. SQM exploits what is considered the world's largest lithium deposit in Chile's northern Atacama desert, an area with high conce ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
US May Order Russian Soyuz Spacecraft to Fly Astronauts to ISS in 2020 - Source

Cement, extreme cold experiments head to space aboard Cygnus cargo ship

US spacewalkers swap, check coolers 'Leaky' and 'Frosty'

NASA Invites Media to SLS Industry Day

ENERGY TECH
US indirectly confirms existence of Russia's hypersonic weapons

Chinese private firm launches first space rocket

RL10 engine to power ULA's new Vulcan Centaur Upper Stage

NASA's emerging microgap cooling to be tested aboard New Shepard

ENERGY TECH
NASA's Curiosity Rover Aims to Get Its Rhythm Back

Sierra Nevada Corporation Hardware on NASA's Mars InSight Mission

Dorset as model to help find traces of life on Mars

Opportunity team continues studies on origin of 'Perseverance Valley'

ENERGY TECH
China's Queqiao satellite carries "large umbrella" into deep space

Russia May Help China Create International Cosmonauts Rehabilitation Center

Sunrise for China's commercial space industry?

Chinese rewrite record, live 370 days in self-contained moon lab

ENERGY TECH
Goonhilly lands 24m pounds investment enabling global expansion

Australian Space Agency Lost In Canberra

In crowded field, Iraq election hopefuls vie to stand out

ESA selects three new mission concepts for study

ENERGY TECH
Astonishing effect enables better palladium catalysts

Waterloo chemists create faster and more efficient way to process information

Supercomputing the emergence of material behavior

Keep the light off: A material with improved mechanical performance in the dark

ENERGY TECH
Orbital variations can trigger 'snowball states' on exoplanets

Amateur astronomer's data helps scientists discover a new exoplanet

Scientists crack how primordial life on Earth might have replicated itself

Atmospheric seasons could signal alien life

ENERGY TECH
Study co-authored by UCLA scientists shows evidence of water vapor plumes on Jupiter moon

Old Data Reveal New Evidence of Europa Plumes

New views of Jupiter" showcases swirling clouds on giant planet

Fresh results from NASA's Galileo spacecraft 20 years on









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.