. 24/7 Space News .
CHIP TECH
University of Utah researchers develop milestone for ultra-fast communications and computing
by Staff Writers
Salt Lake City UT (SPX) Nov 08, 2017


University of Utah physics and astronomy Distinguished Professor Valy Vardeny, left, and University of Utah electrical and computer engineering professor Ajay Nahata have discovered that a special kind of perovskite, a combination of an organic and inorganic compound that has the same structure as the original mineral, can be layered on a silicon wafer to create a vital component for the communications system of the future. That system would use the terahertz spectrum, the next generation of communications bandwidth that uses light instead of electricity to shuttle data, allowing cellphone and internet users to transfer information a thousand times faster than today.

A mineral discovered in Russia in the 1830s known as a perovskite holds a key to the next step in ultra-high-speed communications and computing.

Researchers from the University of Utah's departments of electrical and computer engineering and physics and astronomy have discovered that a special kind of perovskite, a combination of an organic and inorganic compound that has the same structure as the original mineral, can be layered on a silicon wafer to create a vital component for the communications system of the future. That system would use the terahertz spectrum, the next generation of communications bandwidth that uses light instead of electricity to shuttle data, allowing cellphone and internet users to transfer information a thousand times faster than today.

The new research, led by University of Utah electrical and computer engineering professor Ajay Nahata and physics and astronomy Distinguished Professor Valy Vardeny, was published Monday, Nov. 6 in the latest edition of Nature Communications.

The terahertz range is a band between infrared light and radio waves and utilizes frequencies that cover the range from 100 gigahertz to 10,000 gigahertz (a typical cellphone operates at just 2.4 gigahertz). Scientists are studying how to use these light frequencies to transmit data because of its tremendous potential for boosting the speeds of devices such as internet modems or cell phones.

Nahata and Vardeny uncovered an important piece of that puzzle: By depositing a special form of multilayer perovskite onto a silicon wafer, they can modulate terahertz waves passing through it using a simple halogen lamp. Modulating the amplitude of terahertz radiation is important because it is how data in such a communications system would be transmitted.

Previous attempts to do this have usually required the use of an expensive, high-power laser. What makes this demonstration different is that it is not only the lamp power that allows for this modulation but also the specific color of the light. Consequently, they can put different perovskites on the same silicon substrate, where each region could be controlled by different colors from the lamp. This is not easily possible when using conventional semiconductors like silicon.

"Think of it as the difference between something that is binary versus something that has 10 steps," Nahata explains about what this new structure can do. "Silicon responds only to the power in the optical beam but not to the color. It gives you more capabilities to actually do something, say for information processing or whatever the case may be."

Not only does this open the door to turning terahertz technologies into a reality - resulting in next-generation communications systems and computing that is a thousand times faster - but the process of layering perovskites on silicon is simple and inexpensive by using a method called "spin casting," in which the material is deposited on the silicon wafer by spinning the wafer and allowing centrifugal force to spread the perovskite evenly.

Vardeny says what's unique about the type of perovskite they are using is that it is both an inorganic material like rock but also organic like a plastic, making it easy to deposit on silicon while also having the optical properties necessary to make this process possible.

"It's a mismatch," he said. "What we call a 'hybrid.'"

Nahata says it's probably at least another 10 years before terahertz technology for communications and computing is used in commercial products, but this new research is a significant milestone to getting there.

"This basic capability is an important step towards getting a full-fledged communications system," Nahata says. "If you want to go from what you're doing today using a modem and standard wireless communications, and then go to a thousand times faster, you're going to have to change the technology dramatically."

CHIP TECH
How a $10 microchip turns 2-D ultrasound machines to 3-D imaging devices
Durham NC (SPX) Nov 03, 2017
Technology that keeps track of how your smartphone is oriented can now give $50,000 ultrasound machines many of the 3-D imaging abilities of their $250,000 counterparts - for the cost of a $10 microchip. Doctors and engineers from Duke and Stanford universities will demonstrate their device Oct. 31 at the American College of Emergency Physicians (ACEP) Research Forum in Washington, D.C. ... read more

Related Links
University of Utah
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
How Does Your Space Garden Grow

NanoRacks Deploys Second Kaber-Class Microsatellite This Week, First On-Orbit Assembly

Saudi Arabia to invest $1 billion in Virgin Galactic

Scientist devises a solar reactor to make water and oxygen from moon rocks

CHIP TECH
Arianespace to launch Embratel Star One D2

What Ever Happened to Sea Launch?

SpaceX launches Korean satellite, sticks rocket landing

Arianespace to launch Inmarsat's fifth Global Xpress satellite

CHIP TECH
Next Mars Rover Will Have 23 'Eyes'

In desert of Oman, a gateway to life on Mars

Winters leave marks on Mars' sand dunes

Winters on Mars are shaping the Red Planet's landscape

CHIP TECH
Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

UN official commends China's role in space cooperation

CHIP TECH
New Chinese sat comms company awaits approval

Myanmar to launch own satellite system-2 in 2019: vice president

Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

Turkey, Russia to Enhance Cooperation in the Field of Space Technologies

CHIP TECH
Liquids take a shine to terahertz radiation

Voltage-driven liquid metal fractals

Cancer cells destroyed with dinosaur extinction metal

Jellyfish-inspired electronic skin glows when it gets hurt

CHIP TECH
Overlooked Treasure: The First Evidence of Exoplanets

Scientists discover new type of deep-sea hunting called kleptopredation

'Monster' planet discovery challenges formation theory

One small doorstep for man: Cosmic mat welcomes aliens

CHIP TECH
Jupiter's X-ray auroras pulse independently

Haumea, the most peculiar of Pluto companions, has a ring around it

Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.