Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TECH SPACE
University of Kentucky physicist discovers new 2-D material that could upstage graphene
by Staff Writers
Lexington KY (SPX) Mar 04, 2016


The atoms in the new structure are arranged in a hexagonal pattern as in graphene, but that is where the similarity ends. The three elements forming the new material all have different sizes; the bonds connecting the atoms are also different. As a result, the sides of the hexagons formed by these atoms are unequal, unlike in graphene. Image courtesy Madhu Menon. For a larger version of this image please go here.

A new one atom-thick flat material that could upstage the wonder material graphene and advance digital technology has been discovered by a physicist at the University of Kentucky working in collaboration with scientists from Daimler in Germany and the Institute for Electronic Structure and Laser (IESL) in Greece.

Reported in Physical Review B, Rapid Communication, the new material is made up of silicon, boron and nitrogen - all light, inexpensive and earth abundant elements - and is extremely stable, a property many other graphene alternatives lack. "We used simulations to see if the bonds would break or disintegrate - it didn't happen," said Madhu Menon, a physicist in the UK Center for Computational Sciences. "We heated the material up to 1,000 degree Celsius and it still didn't break."

Using state-of-the-art theoretical computations, Menon and his collaborators Ernst Richter from Daimler and a former UK Department of Physics and Astronomy post-doctoral research associate, and Antonis Andriotis from IESL, have demonstrated that by combining the three elements, it is possible to obtain a one atom-thick, truly 2D material with properties that can be fine-tuned to suit various applications beyond what is possible with graphene.

While graphene is touted as being the world's strongest material with many unique properties, it has one downside: it isn't a semiconductor and therefore disappoints in the digital technology industry. Subsequent search for new 2D semiconducting materials led researchers to a new class of three-layer materials called transition-metal dichalcogenides (TMDCs). TMDCs are mostly semiconductors and can be made into digital processors with greater efficiency than anything possible with silicon. However, these are much bulkier than graphene and made of materials that are not necessarily earth abundant and inexpensive.

Searching for a better option that is light, earth abundant, inexpensive and a semiconductor, the team led by Menon studied different combinations of elements from the first and second row of the Periodic Table.

Although there are many ways to combine silicon, boron and nitrogen to form planar structures, only one specific arrangement of these elements resulted in a stable structure. The atoms in the new structure are arranged in a hexagonal pattern as in graphene, but that is where the similarity ends.

The three elements forming the new material all have different sizes; the bonds connecting the atoms are also different. As a result, the sides of the hexagons formed by these atoms are unequal, unlike in graphene. The new material is metallic, but can be made semiconducting easily by attaching other elements on top of the silicon atoms.

The presence of silicon also offers the exciting possibility of seamless integration with the current silicon-based technology, allowing the industry to slowly move away from silicon instead of eliminating it completely, all at once.

"We know that silicon-based technology is reaching its limit because we are putting more and more components together and making electronic processors more and more compact," Menon said. "But we know that this cannot go on indefinitely; we need smarter materials."

Furthermore, in addition to creating an electronic band gap, attachment of other elements can also be used to selectively change the band gap values - a key advantage over graphene for solar energy conversion and electronics applications.

Other graphene-like materials have been proposed but lack the strengths of the material discovered by Menon and his team. Silicene, for example, does not have a flat surface and eventually forms a 3D surface. Other materials are highly unstable, some only for a few hours at most.

The bulk of the theoretical calculations required were performed on the computers at the UK Center for Computational Sciences with collaborators Richter and Andriotis directly accessing them through fast networks. Now the team is working in close collaboration with a team led by Mahendra Sunkara of the Conn Center for Renewable Energy Research at University of Louisville to create the material in the lab. The Conn Center team has had close collaborations with Menon on a number of new materials systems where they were able to test his theory with experiments for a number of several new solar materials.

"We are very anxious for this to be made in the lab," Menon said. "The ultimate test of any theory is experimental verification, so the sooner the better!"

Some of the properties, such as the ability to form various types of nanotubes, are discussed in the paper but Menon expects more to emerge with further study.

"This discovery opens a new chapter in material science by offering new opportunities for researchers to explore functional flexibility and new properties for new applications," he said. "We can expect some surprises."

.


Related Links
University of Kentucky
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
New trigger for self-powered mechanical movement
University Park PA (SPX) Mar 02, 2016
A new way to use the chemical reactions of certain enzymes to trigger self-powered mechanical movement has been developed by a team of researchers at Penn State University and the University of Pittsburgh. A paper describing the team's research, titled "Convective flow reversal in self-powered enzyme micropumps," is published this week in the journal Proceedings of the National Academy of Scienc ... read more


TECH SPACE
NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

NASA releases strange 'music' heard by 1969 astronauts

TECH SPACE
Revisit NASA's Mars Pathfinder and Rover In 360 Viewer

Opportunity Mars Rover Goes Six-Wheeling up a Ridge

Jarosite in the Noctis Labyrinthus Region of Mars

Trace Gas Orbiter and Schiaparelli are joined

TECH SPACE
Tools and Talent at Michoud to Complete SLS Core Stage Welding in 2016

Orion Simulations Help Engineers Evaluate Mission Operations for Crew

Orion Test Hardware in Position for Solar Array Test

NASA Space Program Now Requires Russian Language

TECH SPACE
Logistics Rule on Tiangong 2

China to launch second space lab Tiangong-2 in Q3

China's moon lander Chang'e-3 enters 28th lunar day

Staying Alive on Tiangong 2

TECH SPACE
Paragon wins NASA ISS water processor development contract

NASA's Science Command Post Supports Scott Kelly's Year In Space

After nearly a year in space, Scott Kelly craves human contact

Scott Kelly returns to earth, but science for NASA's journey to Mars continues

TECH SPACE
At last second, SpaceX delays satellite launch again

Arianespace Soyuz to launch 2 Galileo satellites in May

SpaceX postpones rocket launch again

Russian rocket engines ban could leave US space program in limbo

TECH SPACE
Imaging Technique May Help Discover Earth-Like Planets Around Other Stars

Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

Longest-Lasting Stellar Eclipse Discovered

TECH SPACE
Bone research could yield stronger synthetic materials

New catalyst makes hydrogen peroxide accessible to developing world

Research demonstrates that air data can be used to reconstruct radiological releases

California researchers reveal how to hack a 3D printer




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.