. 24/7 Space News .
SPACE MEDICINE
Unique womb-like device could reduce mortality and disability for extremely premature babies
by Staff Writers
Philadelphia PA (SPX) Apr 26, 2017


The current system mimics life in the uterus as closely as possible, building on knowledge from previous neonatal research. There is no external pump to drive circulation, because even gentle artificial pressure can fatally overload an underdeveloped heart, and there is no ventilator, because the immature lungs are not yet ready to do their work of breathing in atmospheric oxygen.

A unique womb-like environment designed by pediatric researchers could transform care for extremely premature babies, by mimicking the prenatal fluid-filled environment to give the tiniest newborns a precious few weeks to develop their lungs and other organs.

"Our system could prevent the severe morbidity suffered by extremely premature infants by potentially offering a medical technology that does not currently exist," said study leader Alan W. Flake, MD, a fetal surgeon and director of the Center for Fetal Research in the Center for Fetal Diagnosis and Treatment at Children's Hospital of Philadelphia (CHOP).

Flake and colleagues report on preclinical studies of their extra-uterine support device in Nature Communications. They tested and monitored effects on fetal lambs, in which prenatal lung development is very similar to that occurring in humans.

The innovative system uses a unique fluid-filled container attached to custom-designed machines that provide physiologic support. The fetal lambs grow in a temperature-controlled, near-sterile environment, breathing amniotic fluid as they normally do in the womb, their hearts pumping blood through their umbilical cord into a gas exchange machine outside the bag. Electronic monitors measure vital signs, blood flow and other crucial functions.

Of the one in ten U.S. births that are premature (younger than 37 weeks gestational age), about 30,000 per year are critically preterm - younger than 26 weeks. Extreme prematurity is the nation's leading cause of infant mortality and morbidity, accounting for one-third of all infant deaths and one-half of all cases of cerebral palsy attributed to prematurity.

Neonatal care practices have improved overall survival of premature infants and have pushed the limits of viability to 22 to 23 weeks of gestation. At that age an infant weighs below 600 grams - little more than a pound - and has a 30 to 50 percent chance of survival. But this survival comes at a high price in quality of life, with a 90 percent risk of morbidity, from chronic lung disease or other complications of organ immaturity. Survivors face lifelong disability.

"These infants have an urgent need for a bridge between the mother's womb and the outside world," said Flake.

"If we can develop an extra-uterine system to support growth and organ maturation for only a few weeks, we can dramatically improve outcomes for extremely premature babies." The goal is to support infants from 23 weeks to 28 weeks gestational age; at 28 weeks they cross the threshold away from the most severe outcomes.

In the current study, the researchers describe the evolution of their system over three years, through a series of four prototypes, beginning with a glass incubator tank, and progressing to the current device. The eight preterm lambs tested in the most recent prototype were physiologically equivalent to a 23- or 24-week-gestation human infant.

The current system mimics life in the uterus as closely as possible, building on knowledge from previous neonatal research. There is no external pump to drive circulation, because even gentle artificial pressure can fatally overload an underdeveloped heart, and there is no ventilator, because the immature lungs are not yet ready to do their work of breathing in atmospheric oxygen.

Instead, the baby's heart pumps blood via the umbilical cord into the system's low-resistance external oxygenator that substitutes for the mother's placenta in exchanging oxygen and carbon dioxide.

In addition, amniotic fluid, produced in the laboratory, flows into and out of the bag. "Fetal lungs are designed to function in fluid, and we simulate that environment here, allowing the lungs and other organs to develop, while supplying nutrients and growth factors," said fetal physiologist Marcus G. Davey, PhD, who designed and redesigned the system's inflow and outflow apparatus.

The sealed, sterile environment inside the system is insulated from variations in temperature, pressure and light, and particularly from hazardous infections.

Previous researchers have investigated versions of an artificial placenta in animal models, but pumpless systems have achieved a maximum duration of 60 hours, and the animals have sustained brain damage. The new system, in contrast, has operated up to 670 hours (28 days) with some animals, which remained healthy. The lambs showed normal breathing and swallowing, opened their eyes, grew wool, became more active, and had normal growth, neurological function and organ maturation.

The program team brings together a broad range of experts at CHOP, including neonatologists, fetal medicine specialists, respiratory therapists, perfusionists and others. The initial impetus for the program came from CHOP research fellow Emily Partridge, MD, PhD, who experienced the challenges of caring for critically premature infants. "Those infants really struck a chord with me," she said. She researched existing scientific literature, and five years ago proposed to Flake the pilot project that became the current device.

The researchers will continue to evaluate and refine the system, and will need to downsize it for human infants, who are one-third the size of the infant lambs used in the current study.

If their animal results translate into clinical care, Flake envisions that a decade from now, extremely premature infants would continue to develop in chambers filled with amniotic fluid, rather than lying in incubators, attached to ventilators. Added to the desired health benefits, there could be a large economic impact as well, reducing the estimated $43 billion annual medical costs of prematurity in the U.S.

Flake stresses that the team does not aim to extend viability to an earlier period than the current mark of 23 weeks. Before that point, limitations of physical size and physiologic functioning would impose unacceptably high risks. However, he added, "This system is potentially far superior to what hospitals can currently do for a 23-week-old baby born at the cusp of viability. This could establish a new standard of care for this subset of extremely premature infants."

Emily A. Partridge, Marcus G. Davey, Matthew A. Hornick, Patrick E. McGovern, Ali Y. Mejaddam, Jesse D. Vrecenak, Carmen Mesas-Burgos, Aliza Olive, Robert C. Caskey, Theodore R. Weiland, Jiancheng Han, Alexander J. Schupper, James T. Connelly, Kevin C. Dysart, Jack Rychik, Holly L. Hedrick, William H. Peranteau, and Alan W. Flake, "An extra-uterine system to physiologically support the extreme premature lamb," Nature Communications, published April 25, 2017

SPACE MEDICINE
Scientists to test medicine for bone loss on Tianzhou-1
Beijing (XNA) Apr 23, 2017
Scientists will test a medicine to treat bone loss during the maiden voyage of China's first cargo spacecraft Tianzhou-1. The medicine has been specially developed for astronauts, but they hope it will benefit ordinary people too. The main mission of Tianzhou-1 launched on Thursday is to test propellant refueling technology, which is crucial for the construction and operation of China's pl ... read more

Related Links
Children's Hospital of Philadelphia
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
'Better you than me,' Trump tells record-breaking astronaut

Cygnus docks with ISS, delivering 28 Cubesats from multiple customers

Orbital cargo ship arrives at space station

Russian, American two-man crew reaches ISS

SPACE MEDICINE
India to Launch Carrier Rocket With Higher Payload Capacity in May

Aerojet Rocketdyne completes qualification tests on reusable rocket engine

Russian MoD to Further Develop Plesetsk Cosmodrome Infrastructure

Airbus Safran Launchers initiates production of the Ariane 6 ground qualification models

SPACE MEDICINE
Danish Martian Experts Get Their Hands on a Piece of 'Black Beauty'

New Look at 2004's Martian Hole-in-One Site

Researchers Produce Detailed Map of Potential Mars Rover Landing Site

Mars Rover Opportunity Leaves 'Tribulation'

SPACE MEDICINE
Are human space babies conceivable?

China's first cargo spacecraft docks with space lab

China launches first cargo spacecraft Tianzhou-1

Tianzhou-1 space truck soars into orbit

SPACE MEDICINE
Airbus and Intelsat team up for more capacity

Commercial Space Operators To Canada: "We're Here, and We can Help"

Antenna Innovation Benefits the Government Customer

Ukraine in talks with ESA to become member

SPACE MEDICINE
MIT engineers manipulate water using only light

NIST method sees through concrete to detect early-stage corrosion

Berkeley Lab scientists discover new atomically layered, thin magnet

A plastic-eating caterpillar

SPACE MEDICINE
Detecting Life in the Driest Place on Earth

In experiments on Earth, testing possible building blocks of alien life

Newly Discovered Exoplanet May be Best Candidate in Search for Signs of Life

Breakthrough Listen Publishes Initial Results

SPACE MEDICINE
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.