. 24/7 Space News .
CHIP TECH
Ultrafast measurements explain quantum dot voltage drop
by Staff Writers
Los Alamos NM (SPX) Mar 23, 2017


A femtosecond laser pulse launches a photocurrent transient in a quantum dot solid, which is time-resolved using ultrafast sampling electronics. This technique provides unprecedented insights into early time photoconductance in quantum dot assemblies for solar cells and photodetectors. Image courtesy Los Alamos National Laboratory.

Solar cells and photodetectors could soon be made from new types of materials based on semiconductor quantum dots, thanks to new insights based on ultrafast measurements capturing real-time photoconversion processes.

"Our latest ultrafast electro-optical spectroscopy studies provide unprecedented insights into the photophysics of quantum dots," said lead researcher Victor Klimov, a physicist specializing in semiconductor nanocrystals at Los Alamos National Laboratory, "and this new information helps perfect the materials' properties for applications in practical photoconversion devices.

"Our new experimental technique allows us to follow a chain of events launched by femtosecond laser pulses and pin down processes responsible for efficiency losses during transformation of incident light into electrical current."

Photoconversion is a process wherein the energy of a photon, or quantum of light, is converted into other forms of energy, for example, chemical or electrical.

Semiconductor quantum dots are chemically synthesized crystalline nanoparticles that have been studied for more than three decades in the context of various photoconversion schemes including photovoltaics (generation of photo-electricity) and photo-catalysis (generation of "solar fuels"). The appeal of quantum dots comes from the unmatched tunability of their physical properties, which can be adjusted by controlling the size, shape and composition of the dots.

At Los Alamos, the research connects to the institutional mission of solving national security challenges through scientific excellence, in this case focusing on novel physical principles for highly efficient photoconversion, charge manipulation in exploratory device structures and novel nanomaterials.

The interest in quantum dots as solar-cell materials has been motivated by their tunable optical spectra as well as interesting new physics such as high-efficiency carrier multiplication, that is, generation of multiple electron-hole pairs by single photons. This effect, discovered by Los Alamos researchers in 2004, resulted in the surge of activities in the area of quantum dot solar cells that quickly pushed the efficiencies of practical devices to more than 10 percent.

Further progress in this area has been by hindered by the challenge of understanding the mechanisms of electrical conductance in quantum dot solids and the processes that limit the charge transport distance.

One specific and persistent challenge of great importance from the standpoint of photovoltaic (PV) applications, Klimov said, is understanding the reasons underlying a considerable loss in photovoltage compared to predicted theoretical limits--a problem with quantum dot solar cells known as a "photovoltage deficit." Los Alamos researchers at the Center for Advanced Solar Photophysics (CASP) helps answer some of the above questions.

By applying a combination of ultrafast optical and electrical techniques, the Los Alamos scientists have been able to resolve step-by-step a sequence of events involved in photoconversion in quantum dot films from generation of an exciton to electron-hole separation, dot-to-dot charge migration and finally recombination.

The high temporal resolution of these measurements (better than one billionth of a second) enabled the team to reveal the cause of a large drop of the electron energy, which results from very fast electron trapping by defect-related states. In the case of practical devices, this process would result in reduced photovoltage.

The newly conducted studies establish the exact time scale of this problematic trapping process and suggest that a moderate (less than ten-fold) improvement in the electron mobility should allow for collecting photogenerated charge carriers prior to their relaxation into lower-energy states. This would produce a dramatic boost in the photovoltage and therefore increase the overall device efficiency.

Another interesting effect revealed by these studies is the influence of electron and hole "spins" on photoconductance. Usually spin properties of particles (they can be thought of as the rate and direction of particle rotation around its axis) are invoked in the case of interactions with a magnetic field.

However, previously it was found that even a weak interaction between spins of an electron and a hole (so-called "spin-exchange" interaction) has a dramatic effect on light emission from the quantum dots.

The present measurements reveal that these interactions also affect the process of electron-hole separation between adjacent dots in quantum-dot solids. Specifically these studies suggest that future efforts on high-sensitivity quantum-dot photodetectors should take into consideration the effect of exchange blockade, which otherwise might inhibit low-temperature photoconductance.

Quantum dot materials have been at the heart of research at the Los Alamos Center for Advanced Solar Photophysics, which has investigated their application to solar-energy technologies such as luminescent sunlight collectors for solar windows and low-cost PV cells processed from quantum dot solutions.

See a video on quantum dots here

Research paper: "Electron-hole exchange blockade and memory-less recombination in photoexcited films of colloidal quantum dots," Andrew F. Fidler, Jianbo Gao and Victor I. Klimov

CHIP TECH
Bonding chips using inkjet printers
Washington DC (SPX) Mar 15, 2017
Today in electronics there are two main approaches to building circuits: the rigid one (silicon circuits) and the new, more appealing, flexible one based on paper and polymeric substrates that can be combined with 3-D printing. To date, chips are used to reach the reliable and high electrical performance needed for sophisticated specialized functions. However, for higher complexity systems ... read more

Related Links
Los Alamos National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA's hybrid computer enables Raven's autonomous rendezvous capability

Trump, NASA and a rare consensus: mission to Mars

COBALT Flight Demonstrations Fuse Technologies to Gain Precision Landing Results

Spacewalking French, US astronauts to upgrade orbiting lab

CHIP TECH
N.Korea rocket test shows 'meaningful progress': South

MAXUS - Europe's largest sounding rocket to be launched from Esrange

Spaceport America sets new record for student launched sounding rocket

Satellite launch shelved over strikes

CHIP TECH
Mars Volcano, Earth's Dinosaurs Went Extinct About the Same Time

Breaks observed in Curiosity rover wheel treads

Does Mars Have Rings? Not Right Now, But Maybe One Day

ExoMars: science checkout completed and aerobraking begins

CHIP TECH
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

CHIP TECH
OneWeb Satellites breaks ground on high-volume satellite manufacturing facility

Start-Ups at the Final Frontier

Russia probes murder of senior space official in jail

Globalsat Sky and Space Global sign MoU for testing and offering satellite service in Latin America

CHIP TECH
Rare-earths become water-repellent only as they age

New study maps space dust in 3-D

Visualizing nuclear radiation

ADATS could assist X-planes with large, super-fast data transmission

CHIP TECH
Fledgling stars try to prevent their neighbors from birthing planets

Fossil or inorganic structure? Scientists dig into early life forms

Gigantic Jupiter-type planet reveals insights into how planets evolve

Operation of ancient biological clock uncovered

CHIP TECH
Scientists make the case to restore Pluto's planet status

ESA's Jupiter mission moves off the drawing board

NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.