Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Ultrafast heating of water - This pot boils faster than you can watch it
by Staff Writers
Hamburg, Germany (SPX) Dec 22, 2013


A single terahertz flash can heat the water cloud to 600 degrees centigrade, while leaving all water molecules intact. Credit: Oriol Vendrell/DESY. For a larger version of this image please go here.

Scientists from the Hamburg Center for Free-Electron Laser Science have devised a novel way to boil water in less than a trillionth of a second. The theoretical concept, which has not yet been demonstrated in practice, could heat a small amount of water by as much as 600 degrees Celsius in just half a picosecond (a trillionth of a second).

That is much less than the proverbial blink of an eye: one picosecond is to a second what one second is to almost 32 millennia. This would make the technique the fastest water-heating method on earth.

The novel concept opens up interesting new ways for experiments with heated samples of chemical or biological relevance, as the inventors report in this week's issue of the scientific journal Angewandte Chemie - International Edition (Nr. 51, 16 December).

"Water is the single most important medium in which chemical and biological processes take place," explains DESY scientist Dr. Oriol Vendrell from the Center for Free-Electron Laser Science CFEL, a cooperation of DESY, the University of Hamburg and the German Max Planck Society. "Water is not just a passive solvent, but plays an important role in the dynamics of biological and chemical processes by stabilising certain chemical compounds and enabling specific reactions."

All it takes for superfast water heating is a concentrated flash of terahertz radiation. Terahertz radiation consists of electromagnetic waves with a frequency between radio waves and infrared.

Terahertz flashes can be generated with devices called free-electron lasers that send accelerated electrons on a well defined slalom course. The particles emit electromagnetic waves in each bend that add up to an intense laser like pulse. The terahertz pulse changes the strength of the interaction between water molecules in a very short time, which immediately start to vibrate violently.

The scientists calculated the interaction of the terahertz flash with bulk water. The simulations were performed at the Supercomputer Center Julich and used a total of 200,000 hours of processor time by massively parallel computing. On a single processor machine this would correspond to about 20 years of computation.

"We have calculated that it should be possible to heat up the liquid to about 600 degrees Celsius within just half a picosecond, obtaining a transiently hot and structureless environment still at the density of the liquid, leaving all water molecules intact," explains Vendrell.

The novel method can only heat about one nanolitre (billionth of a litre) in one go. This may sound small, but is large enough for most experiments. For comparison, ink-jet printers fire droplets that are as small as one picolitre, which is a thousand times less than a nanolitre.

"The idea is to heat-up the 'solvent' so that many molecules start the desired chemical process at the same time and then watch the reaction evolve," explains Vendrell, who worked out the super heater with co-authors Pankaj Kr. Mishra and Prof. Robin Santra, also of CFEL.

Although the hot mini-cloud will fly apart in less than a millisecond (a thousandth of a second), it lasts long enough to unravel everything of interest in thermal reactions such as the combination of small organic molecules to form new substances. The team currently investigates how the intense pulse of terahertz radiation affects different types of molecules dissolved in water, from inorganic to biological systems.

The reaction progress can be probed with ultrashort X-ray flashes like they will be produced by the 3.4-kilometre-long X-ray free-electron laser European XFEL, which currently is being built between the DESY campus in Hamburg and the neighbouring town of Schenefeld. When completed, the European XFEL will be able to generate 27,000 intense X-ray laser flashes per second, which can for example be used to record the different stages of chemical reactions.

One advantage of the heating method is that the terahertz pulse can be very well synchronised with the X-ray flashes to start the experiment and then probe the reaction after a well defined time.

"The transient and hot environment achieved by the terahertz pulse could have interesting properties, like a matrix to study activated chemical processes," says Vendrell. "This will be the subject of further investigations."

"Ultrafast Energy Transfer to Liquid Water by Sub-Picosecond High- Intensity Terahertz Pulses: An Ab Initio Molecular Dynamics Study"; Pankaj Kr. Mishra, Oriol Vendrell and Robin Santra; Angewandte Chemie - International Edition, Vol. 52, Nr. 51, p. 13685-13687, 16. Dezember 2013; DOI: 10.1002/anie.201305991

.


Related Links
Deutsches Elektronen-Synchrotron
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Quantum effects help cells capture light, but the details are obscure
Reston VA (SPX) Dec 09, 2013
Sophisticated recent experiments with ultrashort laser pulses support the idea that intuition-defying quantum interactions between molecules help plants, algae, and some bacteria efficiently gather light to fuel their growth. But key details of nature's vital light-harvesting mechanisms remain obscure, and the exact role that quantum physics may play in understanding them is more subtle th ... read more


TIME AND SPACE
NASA Releases New Earthrise Simulation Video

Most Chang'e-3 science tools activated

China's Lunar Lander May Provide Additional Science for NASA Spacecraft

China plans to launch Chang'e-5 in 2017

TIME AND SPACE
Curiosity Team Upgrades Software, Checks Wheel Wear

Opportunity Communications Remain Slow Due To Odyssey Issues

New Views of Mars from Sediment Mineralogy

NASA poised to launch Mars atmosphere probe

TIME AND SPACE
Sierra Nevada Completes CCDev2, Begins Dream Chaser Flight Test Program

Russia's Putin pledges $1.5 billion for basic science research

Asia's year in space triggers applause but also worry

NASA's network for talking to space missions nears 50th anniversary

TIME AND SPACE
China's moon rover continues lunar survey after photographing lander

China's Yutu "naps", awakens and explores

Deep space monitoring station abroad imperative

Chinese sci-fi writers laud moon landing

TIME AND SPACE
Astronauts remove faulty ammonia pump during first spacewalk after ISS coolant system goes wrong

No early Christmas? Spacesuit issue delays second spacewalk to fix ISS cooling system

Spacesuit flaw postpones station repairs to Dec 24

NASA and Russia prolong contract on Soyuz taxi flights to ISS

TIME AND SPACE
Orbital Launches Completes 40th Consecutive Successful Suborbital Rocket For NASA

Argentina successfully launches research rocket

Gaia secured inside fairing

India to decide December 27 on GSAT-14 launch date

TIME AND SPACE
Gaia Mission Could Help Map Exoplanets

First detection of a predicted unseen exoplanet

Astronomers solve temperature mystery of planetary atmospheres

Nearby failed stars may harbor planet

TIME AND SPACE
Europe's Gaia telescope detaches from Fregat-MT upper stage

Sailing satellites into safe retirement

Researchers Design First Battery-Powered Invisibility Cloaking Device

'Macrocells' influence corrosion rate of submerged marine concrete structures




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement