. 24/7 Space News .
TIME AND SPACE
UT-ORNL team makes first particle accelerator beam measurement in six dimensions
by Staff Writers
Oak Ridge TN (SPX) Aug 14, 2018

The artistic representation illustrates a measurement of a beam in a particle accelerator, demonstrating the beam's structural complexity increases when measured in progressively higher dimensions. Each increase in dimension reveals information that was previously hidden.

The first full characterization measurement of an accelerator beam in six dimensions will advance the understanding and performance of current and planned accelerators around the world.

A team of researchers led by the University of Tennessee, Knoxville conducted the measurement in a beam test facility at the Department of Energy's Oak Ridge National Laboratory using a replica of the Spallation Neutron Source's linear accelerator, or linac. The details are published in the journal Physical Review Letters.

"Our goal is to better understand the physics of the beam so that we can improve how accelerators operate," said Sarah Cousineau, group leader in ORNL's Research Accelerator Division and UT joint faculty professor. "Part of that is related to being able to fully characterize or measure a beam in 6D space - and that's something that, until now, has never been done."

Six-dimensional space is like 3D space but includes three additional coordinates on the x, y, and z axes to track motion or velocity.

"Right away we saw the beam has this complex structure in 6D space that you can't see below 5D - layers and layers of complexities that can't be detangled," Cousineau said. "The measurement also revealed the beam structure is directly related to the beam's intensity, which gets more complex as the intensity increases."

Previous attempts to fully characterize an accelerator beam fell victim to "the curse of dimensionality," in which measurements in low dimensions become exponentially more difficult in higher dimensions.

Scientists have tried to circumvent the issue by adding three 2D measurements together to create a quasi-6D representation. The UT-ORNL team notes that approach is incomplete as a measurement of the beam's initial conditions entering the accelerator, which determine beam behavior farther down the linac.

As part of efforts to boost the power output of SNS, ORNL physicists used the beam test facility to commission the new radio frequency quadrupole, the first accelerating element located at the linac's front-end assembly.

With the infrastructure already in place, a research grant from the National Science Foundation to the University of Tennessee enabled outfitting the beam test facility with the state-of-the-art 6D measurement capability. Conducting 6D measurements in an accelerator has been limited by the need for multiple days of beam time, which can be a challenge for production accelerators.

"Because we have a replica of the linac's front-end assembly at the beam test facility, we don't have to worry about interrupting users' experiment cycles at SNS. That provides us with unfettered access to perform these time-consuming measurements, which is something we wouldn't have at other facilities," said lead author Brandon Cathey, a UT graduate student.

"This result shows the value of combining the freedom and ingenuity of NSF-funded academic research with facilities available through the broad national laboratory complex," said Vyacheslav Lukin, the NSF program officer who oversees the grant to the University of Tennessee.

"There is no better way to introduce a new scientist - a graduate student - to the modern scientific enterprise than by allowing them to lead a first-of-a-kind research project at a facility that uniquely can dissect the particles that underpin what we know and understand about matter and energy."

The researchers' ultimate goal is to model the entire beam, including mitigating so-called beam halo, or beam loss - when particles travel to the outer extremes of the beam and are lost. The more immediate challenge, they say, will be finding software tools capable of analyzing the roughly 5 million data points the 6D measurement generated during the 35-hour period.

"When we proposed making a 6D measurement 15 years ago, the problems associated with the curse of dimensionality seemed insurmountable," said ORNL physicist and coauthor Alexander Aleksandrov. "Now that we've succeeded, we're sure we can improve the system to make faster, higher resolution measurements, adding an almost ubiquitous technique to the arsenal of accelerator physicists everywhere."

The PRL paper is titled "First Six Dimensional Phase Space Measurement of an Accelerator Beam." The paper's coauthors also include ORNL's Alexander Zhukov.

"This research is vital to our understanding if we're going to build accelerators capable of reaching hundreds of megawatts," Cousineau said. "We'll be studying this for the next decade, and SNS is better positioned to do this than any other facility in the world."

Research paper


Related Links
Oak Ridge National Laboratory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Breaking down the Wiedemann-Franz law
Zurich, Switzerland (SPX) Aug 13, 2018
From everyday experience we know that metals are good conductors for both electricity and heat - think inductive cooking or electronic devices warming up upon intense use. That intimate link of heat and electrical transport is no coincidence. In typical metals both sorts of conductivity arise from the flow of 'free' electrons, which move like a gas of independent particles through the material. But when fermionic carriers such as electrons interact with one another, then unexpected phenomena can a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Samsung to invest billions in new tech to drive fresh growth

Blend of novices, veterans to fly on first private US spaceships

Flight Tests to Prove Commercial Systems Fit for Human Spaceflight

NASA Assigns Crews to First Test Flights, Missions on Commercial Spacecraft

TIME AND SPACE
PLD SPACE signs a 25-year concession for rocket engine testing at Teruel Airport

Aerojet Rocketdyne boosters complete simulated air-launch tests

NASA Selects US Firms to Provide Commercial Suborbital Flight Services

China's newest micro-rocket has fast production cycle

TIME AND SPACE
Sorry Elon Musk, but it's now clear that colonising Mars is unlikely

Russia Plans to Send Capsule With Microorganisms to Mars

Mars Dust Storm May Have Peaked

Students can now build their own rover model

TIME AND SPACE
China solicits international cooperation experiments on space station

Growing US unease with China's new deep space facility in Argentina

China developing in-orbit satellite transport vehicle

PRSS-1 Satellite in Good Condition

TIME AND SPACE
Bangladesh PM opens satellite ground stations

Seventh set of Iridium NEXT satellites performing well during pre-operational testing

Telesat signs consortium deal with Thales and SSL new LEO constellation

Thales and SSL form consortium to further design and develop Telesat's LEO constellation

TIME AND SPACE
Rediscovering the sources of Egyptian metals

A new classification of symmetry groups in crystal space proposed by Russian scientists

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions

Better way found to determine the integrity of metals

TIME AND SPACE
VLA Detects Possible Extrasolar Planetary-Mass Magnetic Powerhouse

TESS catches a comet before starting planet hunting mission

Exoplanets where life could develop as on Earth

Exoplanet detectives create reference catalog of spectra and geometric albedos

TIME AND SPACE
New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds

'Ribbon' wraps up mystery of Jupiter's magnetic equator

The True Colors of Pluto and Charon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.