Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Researchers grow large graphene crystals with exceptional electrical properties
by Staff Writers
Austin TX (SPX) Nov 18, 2013


Yufeng Hao, postdoctoral fellow at The University of Texas at Austin, demonstrates large, single graphene crystals grown on copper. Credit: The Cockrell School of Engineering at The University of Texas at Austin.

When it comes to the growth of graphene - an ultrathin, ultrastrong, all-carbon material - it is survival of the fittest, according to researchers at The University of Texas at Austin.

The team used surface oxygen to grow centimeter-size single graphene crystals on copper. The crystals were about 10,000 times as large as the largest crystals from only four years ago. Very large single crystals have exceptional electrical properties.

"The game we play is that we want nucleation (the growth of tiny 'crystal seeds') to occur, but we also want to harness and control how many of these tiny nuclei there are, and which will grow larger," said Rodney S. Ruoff, professor in the Cockrell School of Engineering. "Oxygen at the right surface concentration means only a few nuclei grow, and winners can grow into very large crystals."

The team - led by postdoctoral fellow Yufeng Hao and Ruoff of the Department of Mechanical Engineering and the Materials Science and Engineering Program, along with Luigi Colombo, a material scientist with Texas Instruments - worked for three years on the graphene growth method. The team's paper, "The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper," is featured on the cover of the Nov. 8, 2013, issue of Science.

One of the world's strongest materials, graphene is flexible and has high electrical and thermal conductivity that makes it a promising material for flexible electronics, solar cells, batteries and high-speed transistors. The team's understanding of how graphene growth is influenced by differing amounts of surface oxygen is a major step toward improved high-quality graphene films at industrial scale.

The team's method "is a fundamental breakthrough, which will lead to growth of high-quality and large area graphene film," said Sanjay Banerjee, who heads the Cockrell School's South West Academy of Nanoelectronics (SWAN). "By increasing the single-crystal domain sizes, the electronic transport properties will be dramatically improved and lead to new applications in flexible electronics."

Graphene has always been grown in a polycrystalline form, that is, it is composed of many crystals that are joined together with irregular chemical bonding at the boundaries between crystals ("grain boundaries"), something like a patch-work quilt. Large single-crystal graphene is of great interest because the grain boundaries in polycrystalline material have defects, and eliminating such defects makes for a better material.

By controlling the concentration of surface oxygen, the researchers could increase the crystal size from a millimeter to a centimeter. Rather than hexagon-shaped and smaller crystals, the addition of the right amount of surface oxygen produced much larger single crystals with multibranched edges, similar to a snowflake.

"In the long run it might be possible to achieve meter-length single crystals," Ruoff said. "This has been possible with other materials, such as silicon and quartz. Even a centimeter crystal size - if the grain boundaries are not too defective - is extremely significant."

"We can start to think of this material's potential use in airplanes and in other structural applications - if it proves to be exceptionally strong at length scales like parts of an airplane wing, and so on," he said.

Another major finding by the team was that the "carrier mobility" of electrons (how fast the electrons move) in graphene films grown in the presence of surface oxygen is exceptionally high. This is important because the speed at which the charge carriers move is important for many electronic devices - the higher the speed, the faster the device can perform.

Yufeng Hao says he thinks the knowledge gained in this study could prove useful to industry.

"The high quality of the graphene grown by our method will likely be developed further by industry, and that will eventually allow devices to be faster and more efficient," Hao said.

Single-crystal films can also be used for the evaluation and development of new types of devices that call for a larger scale than could be achieved before, added Colombo.

"At this time, there are no other reported techniques that can provide high quality transferrable films," Colombo said. "The material we were able to grow will be much more uniform in its properties than a polycrystalline film."

This study was funded at UT Austin by the W.M. Keck Foundation, the Office of Naval Research and the Southwest Area Nanotechnology Center (SWAN), which is supported by the Nanoelectronics Research Initiative (NRI). The paper's co-authors are from the Cockrell School of Engineering and the Department of Physics. Other co-authors are from Columbia University, A*STAR (in Singapore), Sandia National Laboratories-Livermore, Rice University and Texas Instruments.

.


Related Links
University of Texas at Austin
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Safe long term storage of CO2 is possible
Potsdam, Germany (SPX) Nov 11, 2013
At the final conference of the EU project CO2CARE - CO2 Site Closure Assessment Research - at the GFZ German Research Centre for Geosciences from 04 to 06 November 2013 more than 60 experts from academia, industry and regulatory authorities from 13 countries discussed technologies and procedures for a safe and sustainable closure of geological CO2 storage sites. Since 2004, GFZ investigate ... read more


CARBON WORLDS
NASA's GRAIL Mission Puts a New Face on the Moon

Moon mission yields clues to face of 'man in the moon'

Shanghai-built lunar rover set for lunar landing

Crowdfunded Lunar Spacecraft Reaches Funding Milestone

CARBON WORLDS
Mars Rover Teams Dub Sites in Memory of Bruce Murray

LeVar Burton Shares MAVEN's Story in a New NASA PSA

Martian moon samples will have bits of Mars

NASA release 'tour' of ancient, wet Mars as YouTube video

CARBON WORLDS
Astronauts Next As NASA Hails Commercial ISS Resupply Program Success

NASA says new deep space vehicle on time for 2014 test

NASA's Orion Sees Flawless Fairing Separation in Second Test

Lockheed Martin Team Tests Orion's Protective Panels

CARBON WORLDS
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

CARBON WORLDS
Russians take Olympic torch on historic spacewalk

Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

Crew Completes Preparations for Soyuz Move

CARBON WORLDS
ASTRA 5B lands in French Guiana for its upcoming Ariane 5 flight

Kazakhstan say Baikonur launch site may be open to Western countries

ESA Swarm launch postponed

Europe's fifth ATV for launch by Arianespace begins its pre-flight checkout at the Spaceport

CARBON WORLDS
NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

CARBON WORLDS
Czech gold deposits make foreign prospectors drool

Protection Of Materials And Structures From Space Environment at ICPMSE 11

Snap to attention: Polymers that react and move to light

Altering surface textures in 'counterintuitive manner' may lead to cooling efficiency gains




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement