. 24/7 Space News .
EARTH OBSERVATION
US Army scientists create new technique for modeling turbulence in the atmosphere
by Staff Writers
Adelphi MD (SPX) Aug 08, 2018

illustration only

Army researchers have designed a computer model that more effectively calculates the behavior of atmospheric turbulence in complex environments, including cities, forests, deserts and mountainous regions.

This new technology could allow Soldiers to predict weather patterns sooner using the computers at hand and more effectively assess flight conditions for aerial vehicles on the battlefield.

Turbulence may be invisible to the naked eye, it is always present around us in the air in the form of chaotic changes in velocity and pressure.

Traditional computational fluid dynamics methods of analyzing atmospheric turbulence treat the fluid as a continuum, solving the nonlinear Navier-Stokes differential equations that are involved.

However, calculating the turbulence in the planetary boundary layer, the lowest layer of the atmosphere, can be difficult due to how the presence of trees, tall buildings and other aspects of the landscape directly influences its behavior.

TCFD methods must account for all effects of the neighboring points surrounding the target, which creates an immense computational load that is very difficult to implement efficiently on modern parallel architectures, such as Graphics Processing Unit accelerators.

As a result, these methods often face challenges when confronted with more intricate environments due to limitations in treating complex surface boundaries.

In an attempt to search for an alternative approach, a team of U.S. Army Research Laboratory scientists led by Dr. Yansen Wang turned to the field of statistical mechanics for ideas.

What they found was the Lattice-Boltzmann method, a technique used by physicists and engineers to predict fluid behavior on a very small scale.

"The Lattice-Boltzmann method is normally used to predict the evolution of a small volume of turbulence flows, but it has never been used for an area as large as the atmosphere," Wang said. "When I read about it in a research paper, I thought that it could be applied to not just a small volume of turbulence but also atmospheric turbulence."

Unlike TCFD methods, the LBM treats the fluid like a collection of particles instead of a continuum and has been widely used in fluid simulation to accurately portray fluid dynamics.

Wang and his team determined that this new approach could accurately model atmospheric turbulence while requiring much less computation than if they had solved for the NS differential equations.

This fundamental change essentially allowed them to disregard a huge chunk of the neighboring points on the grid model, cutting the number of neighboring behaviors to account for and significantly lessening the computational load.

As a result of their investigation, the researchers used the newly developed multi-relaxation-time Lattice-Boltzmann method to create an advanced Atmospheric Boundary Layer Environment model, which specifically treated highly turbulent flow in complex and urban domains.

This marks the first time that an advanced MRT-LBM model has been used to model the atmosphere.

The newly developed ABLE-LBM model paves the way for a highly-versatile approach to atmospheric boundary layer flow prediction.

In addition to providing faster operating speed and simpler complex boundary implementation, this approach is intrinsically parallel and thus compatible with modern parallel architectures, making it a potentially viable modeling method on tactical compute platforms for the U.S. military.

"On the battlefield, you want atmospheric turbulence data quickly but you don't necessarily have any supercomputers on hand," Wang said.

"However, you do have modern computer architecture with thousands of processors that make computing fast if the algorithm is appropriate. With the ABLE-LBM, you can use those modern computer architectures to compute turbulence on the battlefield without having to connect to a high performance computing center."

The development of the ABLE-LBM model has significant ramifications on many other aspects of Army operations besides weather forecast.

Atmospheric turbulence can significantly affect the behavior of optic and acoustic waves, which directly impact what Soldiers can see and hear.

It can act as an important factor in reconnaissance and change the path that a laser travels or how sounds are emitted from a system.

Small unmanned aerial systems are also at the mercy of turbulence vortices, which can occur when a gust of wind hits a building.

Knowing how the turbulence will behave can help sUAS avoid collisions and even take advantage of existing updrafts to fly without their propellers to save energy.

Potential applications can also be found outside the military in civilian life.

Better knowledge of boundary layer turbulence can assist in civil planning in both preparation and emergency response when dealing with chemical spills, industrial fires and other man-made or natural disasters.

"Many people are interested in applying this method in various fields," Wang said. "This technique has paved a new way to model atmospheric turbulence. Our research was the first to set the path for this new direction, so we have a lot of proving to do."

Research Report: "Simulation of stratified flows over a ridge using a lattice-Boltzmann model"


Related Links
U.S. Army Research Laboratory
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Radar better than weather balloon for measuring boundary layer
University Park PA (SPX) Aug 07, 2018
Improving forecasting for a host of severe weather events may be possible thanks to a more comprehensive method for measuring the Earth's boundary layer depth, developed by Penn State researchers. The boundary layer is the layer of atmosphere that is closest to the Earth, less than one mile from the surface. Because it is the layer that is most affected by the convective heat from the Earth's surface, it is responsible for sudden weather shifts such as thunderstorms. The boundary layer gets ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Engine flaw delays Boeing test of crew capsule to 2019

Crewed Missions Beyond LEO

Space tourism economics - financing and regulating trips to the final frontier

Space Station experiment reaches ultracold milestone

EARTH OBSERVATION
NASA Selects US Firms to Provide Commercial Suborbital Flight Services

Space-X forced to push back test launch dates

NASA certifies Russia's RD-180 rocket engines for manned flights

SpaceX launches, lands rocket in challenging conditions

EARTH OBSERVATION
Scientists looking for ways to grow crops on Red Planet

Mars makes closest approach to Earth in 15 years

Evidence of subsurface Martian liquid water bolstered

Life on Mars: Japan astronaut dreams after lake discovery

EARTH OBSERVATION
China developing in-orbit satellite transport vehicle

PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

EARTH OBSERVATION
Thales and SSL form consortium to further design and develop Telesat's LEO constellation

We'll soon have ten times more satellites in orbit - here's what that means

Aerospace Workforce Training A National Mandate for 2018

Rockwell Collins and Iridium Partner to Deliver Next-Generation Aviation Services

EARTH OBSERVATION
US 'crypto-anarchist' sees 3D-printed guns as fundamental right

A new classification of symmetry groups in crystal space proposed by Russian scientists

Lasers write better anodes

UCF professor discovers a first-of-its-kind material for the quantum age

EARTH OBSERVATION
Exoplanets where life could develop as on Earth

Exoplanet detectives create reference catalog of spectra and geometric albedos

NASA's TESS spacecraft starts science operations

How Can You Tell If That ET Story Is Real

EARTH OBSERVATION
High-Altitude Jovian Clouds

'Ribbon' wraps up mystery of Jupiter's magnetic equator

The True Colors of Pluto and Charon

Radiation Maps of Jupiter's Moon Europa: Key to Future Missions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.