Subscribe free to our newsletters via your
. 24/7 Space News .




SPACEWAR
US Army, Raytheon achieve first inflight lethal intercept of low quadrant elevation rocket
by Staff Writers
Yuma Proving Ground AZ (SPX) Aug 21, 2013


File image.

Raytheon has intercepted and destroyed a low quadrant elevation (QE) 107mm rocket as part of the second series of guided test vehicle (GTV) flight tests of the Accelerated Improved Intercept Initiative (AI3) program. The intercept is a major test milestone before the U.S. Army live-fire engagements begin in September.

"Beginning only 18 months and one week ago, and with firm cost requirements, the AI3 interceptor project successfully engaged and destroyed an inflight rocket on a challenging, high-speed flight profile greatly enhancing the range of existing capabilities," said Michael Van Rassen, the U.S. Army's Project Director for Counter Rockets, Artillery and Mortars (C-RAM) and AI3.

"The project used a system of systems approach that lowered risk and enabled an accelerated schedule by leveraging existing government components and off the shelf subsystems to expand the footprint of the protected area for our warfighters."

The AI3 Battle Element system includes: a Raytheon Ku Radio Frequency System (KRFS) Fire Control Radar, an Avenger-based AI3 launcher, a C-RAM command and control, Technical Fire Control, and the Raytheon AI3 interceptor missile.

After launch, the AI3 interceptor initially guided on inflight radio frequency (RF) data link updates from the Ku RF Sensor radar, which was tracking an inbound rocket target threat. The interceptor then transitioned to terminal guidance using the interceptor's onboard seeker and the illumination from the radar to guide the missile to within lethal range.

The target was then detected using an active RF proximity fuze that determined the optimal detonation time for the warhead. With these measurements, the missile calculated the appropriate warhead burst time and defeated the incoming threat.

"This is a significant technical and performance milestone for the program and our team that met the Army's tight schedule and costs objectives," said Steve Bennett, Raytheon Missile Systems AI3 Program Director. "This second GTV demonstrated full integration of the AI3 Battle Element with the C-RAM command and control architecture against the threat target."

Beginning in September, the Army will conduct for-the-record testing of AI3 and continue to engage and destroy baseline and enhanced capability targets such as 107mm and other rockets, unmanned air systems (UAS) and other threats to forward operating bases.

AI3 will protect warfighters by intercepting rockets inflight with these components:

+ Radar: KRFS fire control radar leverages mature technology built for the Army's Future Combat System and that is currently fielded.

+ Raytheon AI3 interceptor: In addition to inflight rockets on low QE flight profiles, the AIM-9 variant missile is capable of intercepting additional targets such as mortars, UAS's and other air breathing platforms at ranges greater than existing capabilities. This varied capability will be tested in the near future.

+ Launcher: An Avenger weapon system modified to fire AI3 missiles and several additional munitions. This common launcher uses rails that are capable of firing the AI3, AMRAAM (Advanced Medium Range Air-to-Air Missile) and AIM-9 series of missiles.

+ Command and control system: The C-RAM C2 system is fielded and combat-proven and will transition as part of the Army's new Integrated Air and Missile Defense Integrated Battle Command System.

+ Raytheon is providing the interceptor and KRFS radar and serving as support to the Government Team, which is the overall systems integrator.

.


Related Links
Raytheon
Military Space News at SpaceWar.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACEWAR
USAF Space Command discontinues space surveillance system
Peterson AFB CO (SPX) Aug 21, 2013
Due to resource constraints caused by sequestration, Air Force Space Command has directed the 21st Space Wing to prepare to discontinue operations at the Air Force Space Surveillance System by Oct. 1. Final decisions on all Fiscal Year 2014 budget issues will be made over the next few weeks. By discontinuing operations, the AFSSS would not be maintained in operational status; however, equi ... read more


SPACEWAR
NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

Moon Base and Beyond

SPACEWAR
Snapping Pictures of the Martian Moons

Mars Rover Opportunity Working at Edge of 'Solander'

MRO Swapping Motion-Sensing Units

Opportunity Reaches Base of 'Solander Point'

SPACEWAR
Next Generation of Explorers Takes the Stage

Has Voyager 1 Left The Solar System?

Groundbreaking space exploration research at UH

Test at Naval Station Proves Recovery Operations for Orion

SPACEWAR
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

SPACEWAR
Italian astronaut recounts spacewalk drowning terror

ISS Boosting Biological Research in Orbit

Japanese Cargo Craft Captured, Berthed to ISS

Japanese Cargo Spacecraft Docks with ISS

SPACEWAR
ISRO pins hopes on GSLV-D5

Lockheed Martin Selects CubeSat Integrators for Athena to Enhance Launch Systems Integration

Russia to resume Proton-M rocket launches in mid-September

Roscosmos denies plans to launch Proton rocket from Baikonur on Sept 15

SPACEWAR
Study: Planets might be 'born free' without a parent star

Distant planet sets speed record by orbiting its star every 8.5 hours

Kepler planet hunter spacecraft is beyond repair: NASA

Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

SPACEWAR
Earliest known iron artifacts come from outer space

ORNL finding goes beyond surface of oxide films

Boeing Thin Disk Laser Exceeds Performance Requirements During Testing

Poisoning corrosion brings stainless magnesium closer




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement