. 24/7 Space News .
CARBON WORLDS
USTC proposes a facile, general, and effective strategy to prepare carbon nanomaterials
by Staff Writers
Beijing, China (SPX) Aug 01, 2018

file image only

Carbon materials (CMs) exhibit great application potentials in diverse fields due to their high electric conductivity, good chemical stability, and unique microstructure. Traditionally, CMs were prepared by the carbonization of low-vapor-pressure natural products or synthetic polymers.

But they suffer from some distinct disadvantages, such as difficulty in tailoring the microstructures and chemical compositions of the obtained products, or complicated and slow polymerization processes. Up to now, it is still a significant challenge to develop a facile, low-cost, and highly controllable method for preparing CM with desired constituents and structures in a large scale.

A research team led by Prof. YU Shuhong and Prof. LIANG Haiwei from the University of Science and Technology of China (USTC) proposes a simple, effective, and versatile method to prepare a series of functional CMs from small organic molecules (SOMs) by a transition metal assisted carbonization process. This work was published on Science Advances entitled as "Transition metal-assisted carbonization of small organic molecules toward functional carbon materials" on July 27th (Science Advances 2018, 4, eaat0788).

Preparation of CMs. (A) Schematic illustration of the preparation process of CMs. (B) Structures of the investigated SOMs for the CM preparation.

Small organic molecules (SOMs) as precursors for preparing CMs have some distinct advantages, such as common availability, relatively low cost, and diverse element species with various contents. Previous efforts on the transformation of SOMs into CMs almost relied on harsh synthesis conditions, e.g. pyrolysis in sealed reactors, chemical vapor deposition, or salt-melt-based ionothermal carbonization, due to the high volatility of SOMs at evaluated temperatures.

To address this, the research group led by Prof. YU Shuhong and Prof. LIANG Haiwei develops a method of transition metal assisted carbonization of SOMs. The transition metals can catalyze the preferential formation of thermally stable intermediate polymeric structures and thus avoid the direct sublimation of SOMs during the heating process, which guarantees the successful preparation of CMs with high carbon yield.

Researchers have found that totally fifteen SOMs and nine TMSs can be employed as carbon precursors and catalysts respectively for preparing CMs. Besides, two hard templates can used in the method to enhance the porosity of obtained CMS. All of research results indicate that the method is a simple, effective, and versatile method to prepare CMs.

The prepared CM exhibited three different prominent microstructures (including bamboo-like multi-walled carbon nanotube, micrometer-sized nanosheets and irregular particles) that were highly dependent on the molecular structures of SOMs. Besides, the CMs possessed high specific surface areas, large pore volumes, abundant heteroatoms as well as highly graphitic structures.

As a results, the CM showed great application potentials for heterogeneous catalysis, e.g. selective oxidization of ethylbenzene and hydrogenation of nitrobenzene, and electrocatalysis, e.g. hydrogen evolution reaction and oxygen reduction reaction. This work opens a new window for the synthesis of CMs with desired constituents and structures.


Related Links
University of Science and Technology of China
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Breakthrough in industrial CO2 usage
Munich, Germany (SPX) Jul 30, 2018
Professor Arne Skerra of the Technical University of Munich (TUM) has succeeded for the first time in using gaseous CO2 as a basic material for the production of a chemical mass product in a biotechnical reaction. The product is methionine, which is used as an essential amino acid, particularly in animal feed, on a large scale. This newly developed enzymatic process could replace its current petrochemical production. The results have now been published in the journal Nature Catalysis. The in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
NASA, Commercial Partners Progress to Human Spaceflight Home Stretch

Space Station experiment reaches ultracold milestone

Cygnus concludes 9th Cargo Supply Mission to Space Station

Space tourism economics - financing and regulating trips to the final frontier

CARBON WORLDS
First SLS Core Stage flight hardware complete, ready for joining

NASA certifies Russia's RD-180 rocket engines for manned flights

SpaceX launches, lands rocket in challenging conditions

Latest Blue Origin Launch Tests Technologies of Interest to Space Exploration

CARBON WORLDS
Scientists looking for ways to grow crops on Red Planet

Students can now build their own rover model

Evidence of subsurface Martian liquid water bolstered

Life on Mars: Japan astronaut dreams after lake discovery

CARBON WORLDS
China developing in-orbit satellite transport vehicle

PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

CARBON WORLDS
Thales and SSL form consortium to further design and develop Telesat's LEO constellation

We'll soon have ten times more satellites in orbit - here's what that means

Aerospace Workforce Training A National Mandate for 2018

Rockwell Collins and Iridium Partner to Deliver Next-Generation Aviation Services

CARBON WORLDS
Tech titans jostle as Pentagon calls for cloud contract bids

Lasers write better anodes

Root vegetables to help make new buildings stronger, greener

Smart machine components alert users to damage and wear

CARBON WORLDS
Exoplanet detectives create reference catalog of spectra and geometric albedos

NASA's TESS spacecraft starts science operations

How Can You Tell If That ET Story Is Real

WSU researcher sees possibility of moon life

CARBON WORLDS
New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds

'Ribbon' wraps up mystery of Jupiter's magnetic equator

The True Colors of Pluto and Charon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.