Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
USC scientists 'clone' carbon nanotubes to unlock their potential for use in electronics
by Staff Writers
Los Angeles CA (SPX) Nov 18, 2012


File image.

The heart of the computer industry is known as "Silicon Valley" for a reason. Integrated circuit computer chips have been made from silicon since computing's infancy in the 1960s. Now, thanks to a team of USC researchers, carbon nanotubes may emerge as a contender to silicon's throne.

Scientists and industry experts have long speculated that carbon nanotube transistors would one day replace their silicon predecessors. In 1998, Delft University built the world's first carbon nanotube transistors - carbon nanotubes have the potential to be far smaller, faster, and consume less power than silicon transistors.

A key reason carbon nanotubes are not in your computer right now is that they are difficult to manufacture in a predictable way. Scientists have had a difficult time controlling the manufacture of nanotubes to the correct diameter, type and ultimately chirality, factors that control nanotubes' electrical and mechanical properties.

Think of chirality like this: if you took a sheet of notebook paper and rolled it straight up into a tube, it would have a certain chirality. If you rolled that same sheet up at an angle, it would have a different chirality. In this example, the notebook paper represents a sheet of latticed carbon atoms that are rolled-up to create a nanotube.

A team led by Professor Chongwu Zhou of the USC Viterbi School of Engineering and Ming Zheng of the National Institute of Standards and Technology in Maryland solved the problem by inventing a system that consistently produces carbon nanotubes of a predictable diameter and chirality.

Zhou worked with his group members Jia Liu, Chuan Wang, Bilu Liu, Liang Chen, and Ming Zheng and Xiaomin Tu of the National Institute of Standards and Technology in Maryland.

"Controlling the chirality of carbon nanotubes has been a dream for many researchers. Now the dream has come true." said Zhou. The team has already patented its innovation, and its research will be published Nov. 13 in Nature Communications.

Carbon nanotubes are typically grown using a chemical vapor deposition (CVD) system in which a chemical-laced gas is pumped into a chamber containing substrates with metal catalyst nanoparticles, upon which the nanotubes grow. It is generally believed that the diameters of the nanotubes are determined by the size of the catalytic metal nanoparticles. However, attempts to control the catalysts in hopes of achieving chirality-controlled nanotube growth have not been successful.

The USC team's innovation was to jettison the catalyst and instead plant pieces of carbon nanotubes that have been separated and pre-selected based on chirality, using a nanotube separation technique developed and perfected by Zheng and his coworkers at NIST. Using those pieces as seeds, the team used chemical vapor deposition to extend the seeds to get much longer nanotubes, which were shown to have the same chirality as the seeds..

The process is referred to as "nanotube cloning." The next steps in the research will be to carefully study the mechanism of the nanotube growth in this system, to scale up the cloning process to get large quantities of chirality-controlled nanotubes, and to use those nanotubes for electronic applications

.


Related Links
University of Southern California
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
First noiseless single photon amplifier
Brisbane, Australia (SPX) Nov 14, 2012
Research physicists have demonstrated the first device capable of amplifying the information in a single particle of light without adding noise. The research collaboration, involving Griffith University, The University of Queensland and University of Science and Technology of China, was able to amplify the noisy quantum state of a single photon subjected to loss, without adding noise in the proc ... read more


CHIP TECH
China's Chang'e-3 to land on moon next year

Moon crater yields impact clues

Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

CHIP TECH
NASA Rover Providing New Weather and Radiation Data About Mars

CU LASP package ready for MAVEN integration bound for Mars

Instrument Delivered for NASA's Upcoming Mars Mission

Melt water on Mars could sustain life

CHIP TECH
NASA Selects Information Technology Flight Operations Support Contract

SciTechTalk: All work and no play?

Get some bed rest - all 21 days of it

Latest China military hardware displayed at airshow

CHIP TECH
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

CHIP TECH
Space station command changes

Russia restores space contact after cable rupture

Russia loses contact with satellites, space station

Cut in Russian link to space station not serious: NASA

CHIP TECH
Arianespace's fourth Spaceport mission with Soyuz ready for fueling

Ariane 5's sixth launch of 2012

Ariane 5 is poised for Arianespace's launch with the EUTELSAT 21B and Star One C3 satellites

Ariane 5 orbits EUTELSAT 21B and Star One C3 satellites

CHIP TECH
Lowell astronomer, collaborators point the way for exoplanet search

A Reborn Planetary Nebula

Lost in Space: Rogue Planet Spotted?

Lowell Astronomer, Collaborators Point The Way For Exoplanet Search

CHIP TECH
Titan is also a green powerhouse

Google's Android is eating Apple's lunch

AVX Introduces SMD Tantalum Chip Capacitors For Aerospace Applications

Google's Android is eating Apple's lunch




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement