Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
UMass Amherst Researchers Reveal Mechanism of Novel Biological Electron Transfer
by Staff Writers
Amherst MA (SPX) Mar 27, 2013


File image: Geobacter sulfurreducens.

When researchers at the University of Massachusetts Amherst led by microbiologist Derek Lovley discovered that the bacterium Geobacter sulfurreducens conducts electricity very effectively along metallic-like "microbial nanowires," they found physicists quite comfortable with the idea of such a novel biological electron transfer mechanism, but not biologists.

"For biologists, Geobacter's behavior represents a paradigm shift. It goes against all that we are taught about biological electron transfer, which usually involves electrons hopping from one molecule to another," Lovley says. "So it wasn't enough for us to demonstrate that the microbial nanowires are conductive and to show with physics the conduction mechanism, we had to determine the impact of this conductivity on the biology."

"We have now identified key components that make these hair-like pili we call nanowires conductive and have demonstrated their importance in the biological electron transport. This time we relied more on genetics. I think most biologists are more comfortable with genetics rather than physics," Lovley adds.

"From my perspective, this is huge. It really clinches a big question. We overturned the major objection the biologists were making and confirmed the assumption in our earlier work, that real metallic-like conductivity is taking place."

Findings are described in an early online issue of mBio, the open-access journal of the American Society for Microbiology. In addition to Lovley, the UMass Amherst team includes first author Madeline Vargas, with Nikhil Malvankar, Pier-Luc Tremblay, Ching Leang, Jessica Smith, Pranav Patel, Oona Snoeyenbos-West and Kelly Nevin.

In 2011, Lovely's group discovered a fundamental, previously unknown property of pili in Geobacter. They found that electrons are transported along the pili via the same metallic-like conductivity found in synthetic organic materials used in electronics. Electrons are conducted over remarkable distances, thousands of times the cell's length. But exactly how the pili accomplished this wasn't clear.

They knew that the conductivity of synthetic conducting organic materials can be attributed to aromatic ringed structures which share electrons, suspended in a kind of a cloud that allows the overlapping electrons to easily flow. It seemed possible that amino acids, which have similar aromatic rings, might serve the same function in biological protein structures like pili. Lovley's team looked for likely aromatic amino acid targets and then substituted non-aromatic amino acids for the aromatic ones to see if this reduced the conductivity of the pili.

It worked. The re-engineered pili with non-aromatic compounds substituted for aromatic ones looked perfect and unchanged under a microscope, but now they no longer functioned as wires. "This new strain is really bad at what Geobacter does best," Lovley says. "Geobacter is known for its ability to grow on iron minerals and for generating electric current in microbial fuel cells, but without conductive pili those capabilities are greatly diminished."

"What we did is equivalent to pulling the copper out of an extension cord," he adds. "The cord looks the same, but it can't conduct electricity anymore."

The ability of protein filaments to conduct electrons in this way not only has ramifications for scientists' basic understanding of natural microbial processes but practical implications for environmental cleanup and the development of renewable energy sources as well, he adds. Lovley's UMass Amherst lab has already been working with federal agencies and industry to use Geobacter to clean up groundwater contaminated with radioactive metals or petroleum and to power electronic monitoring devices with current generated by Geobacter.

His group has also recently shown that Geobacter uses its nanowires to feed electrons to other microorganisms that can produce methane gas. This is an important step in the conversion of organic wastes to methane, which can then be burned to produce electricity.

As more states, including national leader Massachusetts, pass laws to prevent hospitals, universities, hotels and large restaurants from disposing of food waste in landfills, Geobacter's role in producing methane could be part of the solution for how to deal with this waste. The Massachusetts law goes into effect in 2014. "Waste to methane is a well developed green energy strategy in Europe and is almost certain to become more important here in Massachusetts in the near future," Lovley notes.

.


Related Links
University of Massachusetts Amherst
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Electronics and High-Performance Computing Communities Sought for Microfluidic Cooling Demo
Washington DC (SPX) Mar 27, 2013
The increased density of electronic components and subsystems in military electronic systems exacerbates the thermal management challenges facing engineers. The military platforms that host these systems often cannot physically accommodate the large cooling systems needed for thermal management, meaning that heat can be a limiting factor for performance of electronics and embedded computers. ... read more


CHIP TECH
NASA's LRO Sees GRAIL's Explosive Farewell

Amazon's Bezos recovers Apollo 11 engines

Leaping Lunar Dust

Lunar Orbiter Image Recovery Project Seeks Public Support To Retrieve Apollo Era Moon Images

CHIP TECH
Opportunity Heads to Matijevic Hill

Curiosity Resumes Science Investigations

Digging for hidden treasure on Mars

Sun in the Way Will Affect Mars Missions in April

CHIP TECH
Miners shoot for the stars in tech race

Space Innovation Center Will Help Govt Agencies Launch Future Space Missions

The Future of Exploration Starts With 3-D Printing

Lockheed Martin to Continue Providing Life Sciences Support To NASA

CHIP TECH
China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

CHIP TECH
Russia may recycle space station modules

New Space Station Crew Members to Launch and Dock the Same Day

ESA seeks innovators for orbiting laboratory

New ISS crew prepares for launch

CHIP TECH
When quality counts: Arianespace reaffirms its North American market presence

SpaceX capsule returns after ISS resupply mission

SpaceX Dragon Spacecraft Carrying NASA Cargo Ready for Return to Earth

Dragon capsule to spend extra day in space

CHIP TECH
The Great Exoplanet Debate

Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

CHIP TECH
DARPA Envisions the Future of Machine Learning

Removing orbital debris with less risk

New 'BioShock' game takes aim at American taboos

Japan finds rich rare earth deposits on seabed: study




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement