Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
UMD Scientists Create Faster, More Sensitive Photodetector by Tricking Graphene
by Staff Writers
College Park MD (SPX) Jun 11, 2012


Electrons in bilayer graphene are heated by a beam of light. Illustration by Loretta Kuo and Michelle Groce, University of Maryland.

Researchers at the Center for Nanophysics and Advanced Materials of the University of Maryland have developed a new type of hot electron bolometer a sensitive detector of infrared light, that can be used in a huge range of applications from detection of chemical and biochemical weapons from a distance and use in security imaging technologies such as airport body scanners, to chemical analysis in the laboratory and studying the structure of the universe through improved telescopes.

The UMD researchers, led by Research Associate Jun Yan and Professors Michael Fuhrer and Dennis Drew, developed the bolometer using bilayer graphene--two atomic-thickness sheets of carbon.

Due to graphene's unique properties, the bolometer is expected to be sensitive to a very broad range of light energies, ranging from terahertz frequencies or submillimeter waves through the infrared to visible light.

The graphene hot electron bolometer is particularly promising as a fast, sensitive, and low-noise detector of submillimeter waves, which are particularly difficult to detect.

Because these photons are emitted by relatively cool interstellar molecules, submillimeter astronomy studies the early stages of formation of stars and galaxies by observing these interstellar clouds of molecules.

Sensitive detectors of submillimeter waves are being sought for new observatories that will determine the redshifts and masses of very distant young galaxies and enable studies of dark energy and the development of structure in the universe.

The Maryland team's findings are published in the June 3 issue of Nature Nanotechnology.

Most photon detectors are based on semiconductors. Semiconductors are materials which have a range of energies that their electrons are forbidden to occupy, called a band gap. The electrons in a semiconductor can absorb photons of light having energies greater than the band gap energy, and this property forms the basis of devices such as photovoltaic cells.

Graphene, a single atom-thick plane of graphite, is unique in that is has a bandgap of exactly zero energy; graphene can therefore absorb photons of any energy. This property makes graphene particularly attractive for absorbing very low energy photons (terahertz and infrared) which pass through most semiconductors.

Graphene has another attractive property as a photon absorber: the electrons which absorb the energy are able to retain it efficiently, rather than losing energy to vibrations of the atoms of the material.

This same property also leads to extremely low electrical resistance in graphene. University of Maryland researchers exploited these two properties to devise the hot electron bolometer. It works by measuring the change in the resistance that results from the heating of the electrons as they absorb light.

Normally, graphene's resistance is almost independent of temperature, unsuitable for a bolometer. So the Maryland researchers used a special trick: when bilayer graphene is exposed to an electric field it has a small band gap, large enough that its resistance becomes strongly temperature dependent, but small enough to maintain its ability to absorb low energy infrared photons.

The researchers found that their bilayer graphene hot electron bolometer operating at a temperature of 5 Kelvin had comparable sensitivity to existing bolometers operating at similar temperatures, but was more than a thousand times faster.

They extrapolated the performance of the graphene bolometer to lower temperature and found that it may beat all existing technologies.

Some challenges remain. The bilayer graphene bolometer has a higher electrical resistance than similar devices using other materials which may make it difficult to use at high frequencies.

Additionally, bilayer graphene absorbs only a few percent of incident light. But the Maryland researchers are working on ways to get around these difficulties with new device designs, and are confident that a graphene has a bright future as a photodetecting material.

.


Related Links
Center for Nanophysics and Advanced Materials
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
US May auto sales rise 20% on sweeter incentives
Detroit, Michigan (AFP) June 1, 2012
With Toyota and Honda leading the way, US car sales rose by more than 20 percent in May from a year ago, juiced up by increased incentives amid a slow US economy, industry figures showed Friday. In total, 1.33 million new cars and trucks were sold in the United States last month, according to market researcher Autodata. But that was fewer than the 1.39 million vehicles forecast by specia ... read more


CARBON WORLDS
UA Lunar-Mining Team Wins National Contest

NASA Lunar Spacecraft Complete Prime Mission Ahead of Schedule

NASA Offers Guidelines To Protect Historic Sites On The Moon

Neil Armstrong gives rare interview - to accountant

CARBON WORLDS
NASA's Mars rover zeroes in on August landing

Russia May Join Mars Orbiter Project in Nov. - ESA

Robotic Arm Gets to Work on Veins of Gypsum

Odyssey Orbiter Puts Itself into Standby Safe Mode

CARBON WORLDS
US scientists host 'bake sale for NASA'

XCOR Appoints Space Expedition Corp As General Sales Agent For Space Tourism Flights

European Union launches latest space regulation efforts

CU-Boulder students to help NASA develop plant food production for deep space

CARBON WORLDS
Two Women For Tiangong

Shenzhou 9 Ready For Manned Mission To Tiangong-1

China to launch manned spacecraft this month

What will China's Taikonauts do aboard Tiangong 1?

CARBON WORLDS
Strange Geometry - Yes, It's All About the Math

Capillarity in Space - Then and Now, 1962-2012

Dragon on board

SpaceX Launches Falcon 9 Dragon on Historic Mission

CARBON WORLDS
NuSTAR Arrives at Island Launch Site

Another Ariane 5 begins its initial build-up at the Spaceport

Boeing Receives DARPA Airborne Satellite Launch Study Contract

Sea Launch Delivers the Intelsat 19 Spacecraft into Orbit

CARBON WORLDS
Tiny Planet-Finding Mirrors Borrow from Webb Telescope Playbook

Astronomers Probe 'Evaporating' Planet Around Nearby Star with Hobby-Eberly Telescope

Venus transit may boost hunt for other worlds

NSO To Use Venus Transit To Fine-Tune Search For Other Worlds

CARBON WORLDS
Lawrence Livermore research identifies precise measurement of radiation damage

Hologram developers raise real cash for virtual stars

Smooth moves: how space animates Hollywood

Skeleton key




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement