. 24/7 Space News .
STELLAR CHEMISTRY
UK Delivers Super-Cool Kit to USA for Dark Matter Experiment
by Staff Writers
London, UK (SPX) Jul 18, 2018

A worker inspects the titanium cryostat for the LUX-ZEPLIN experiment in a clean room at the Sanford Underground Research Facility in South Dakota.

A huge UK-built titanium chamber designed to keep its contents at a cool -100C and weighing as much as an SUV has been shipped to the United States, where it will soon become part of a next-generation dark matter detector to hunt for the long-theorised elusive dark matter particle called a WIMP (weakly interacting massive particle).

This hunt is important because the nature of dark matter, which physicists describe as the invisible component or 'missing mass' in the universe, has eluded scientists since its existence was deduced by Swiss astronomer Fritz Zwicky in 1933. The quest to find out what dark matter is made of, or whether it can be explained by tweaking the known laws of physics, is considered one of the most pressing questions in particle physics, on a par with the previous hunt for the Higgs boson.

The cryostat chamber was built by a team of engineers at the UK's Science and Technology Facilities Council's Rutherford Appleton Laboratory in Oxfordshire, and journeyed around the world to the LUX-Zeplin (LZ) experiment, located 1,400 meters underground at the Sanford Underground Research Facility (SURF) in South Dakota.

After being delivered to the surface facility at SURF the Outer Cryostat Vessel (OCV) of the cryostat chamber spent five weeks being fully assembled and leak checked in the SURF Assembly Lab (SAL) clean room. It has now been disassembled and packaged for transportation from the surface to the underground location at SURF. Meanwhile the Inner Cryostat Vessel is now in the SAL clean room getting prepared for the leak tests.

STFC's Dr. Pawel Majewski, technical lead for the cryostat, said: "The cryostat was a feat of engineering with some very stringent and challenging requirements to meet. Because of the huge mass of the cryostat - 2,000 kilograms - we had to make sure it was made of ultra radio-pure titanium. It took nearly two years to find a pure enough sample to work with. Eventually we got it from one of the world's leading titanium suppliers in the US where Electron Beam Cold Heart technology was used to melt the titanium.

"This type of ultra-pure titanium is used, for example, in the healthcare industry to fabricate a pacemaker encapsulation. In our case it is used to hold the heart of the experiment."

It took two-and-a-half years to design the specialist equipment, and another two years to build in Italy by a company specialising in vessels and pipes fabrication only from titanium.

The cryostat is a vital part of LZ, as it keeps the detector at freezing temperatures. This is crucial because the detector uses xenon - which at room temperature is a gas. But for the experiment to work, the xenon, which itself has low background radiation, must be kept in a liquid state, which is only achievable at around -100C.

LZ is the latest experiment to hunt for the long-theorised elusive dark matter particle called a WIMP (weakly interacting massive particle). Many scientists believe finding WIMPs will provide the answer to one of the most pressing questions in physics - what is dark matter? WIMPS are thought to make up the most of dark matter - the as-yet-unknown substance which makes up about 85% of the universe. But because WIMPs are thought not to interact with normal matter, they are practically invisible using traditional detection methods.

Liquid xenon emits a flash of light when struck by a particle, and this light can be detected by very sensitive photon detectors called photomultiplier tubes. If a WIMP collides with a xenon nucleus we expect it to produce a burst of light. Before delivery to SURF the cryostat underwent several weeks of rigorous testing and a month-long thorough clean from an expert cleaning company in California. Five years after the design efforts started, the cryostat arrived safely at SURF and the LZ team then carefully unwrapped it and put it into place.

"It's a great experience to see all of the planning for LZ paying off with the arrival of components," said Murdock "Gil" Gilchriese, LZ project director and a Berkeley Lab physicist. "We look forward to seeing these components fully assembled and installed underground in preparation for the start of LZ science."

UK PI for LZ is Professor Henrique Araujo from Imperial College London and he said: "It is incredibly gratifying to see LZ beginning to take shape. Seeing the cryostat arrive is a milestone moment as it has been years in the making.

"Now we have to wait for the other constituent elements to arrive before we can start to see some exciting science taking place at this ground-breaking facility."

LZ will be at least 100 times more sensitive to finding signals from dark matter particles than its predecessor, the Large Underground Xenon experiment (LUX). The new experiment will use 10 metric tons of ultra-purified liquid xenon, to tease out possible dark matter signals. Xenon, in its gas form, is one of the rarest elements in Earth's atmosphere.

Although this is a major milestone for the experiment, there are still many components yet to be assembled and tested. Upgrades of the underground Davis cavern at SURF, where LZ will be installed, are in progress and will be completed by August and large acrylic tanks that will help to validate LZ measurements are expected to arrive at SURF by September. It is currently expected that the experiment will start taking data in 2020.
Related Links
Science and Technology Facilities Council in the UK
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
In search of dark matter
Riverside CA (SPX) Jul 16, 2018
An international team of scientists that includes University of California, Riverside, physicist Hai-Bo Yu has imposed conditions on how dark matter may interact with ordinary matter - constraints that can help identify the elusive dark matter particle and detect it on Earth. Dark matter - nonluminous material in space - is understood to constitute 85 percent of the matter in the universe. Unlike normal matter, it does not absorb, reflect, or emit light, making it difficult to detect. Physic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Scientists Can Now Recycle Water, Air, Fuel, Making Deep Space Travel Possible

First space tourist flights could come in 2019

NASA and Peanuts Worldwide to Collaborate on Deep Space Learning Activities

Russian cargo ship docks at ISS in record time

STELLAR CHEMISTRY
Hot firing proves solid rocket motor for Ariane 6 and Vega-C

Focus on the future of space transportation: ESA's call for ideas

Lockheed Martin to help UK Space Agency build first commercial spaceport

Indian space agency IRSO tests new engine to launch bigger payloads

STELLAR CHEMISTRY
NASA May Have Destroyed Evidence for Organics on Mars 40 Years Ago

Scientists Discover "Ghost Dunes" On Mars

Seasonal 'spiders' emerge on Mars' surface

Airbus wins two ESA studies for Mars Sample Return mission

STELLAR CHEMISTRY
PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

China Rising as Major Space Power

STELLAR CHEMISTRY
New satellite constellations will soon fill the sky

China Mulls Creation of Joint Global Satellite System with Russia

Enhancing competitiveness of European space Sector with increased investments

Goonhilly targets business expansion in Australia and Asia-Pacific

STELLAR CHEMISTRY
Giant Satellite Fuel Tank Sets New Record for 3-D Printed Space Parts

Dutch city to unveil world's first 3D-printed housing complex

Chinese scientists achieve success in nitrogen metallization

Photonic capsules for injectable laser resonators

STELLAR CHEMISTRY
Astronomers find a famous exoplanet's doppelganger

NASA's Webb Space Telescope to Inspect Atmospheres of Gas Giant Exoplanets

TESS Spacecraft Continues Testing Prior to First Observations

Rocky planet neighbor looks familiar, but is not Earth's twin

STELLAR CHEMISTRY
Dozen new Jupiter moons declared

NASA Juno data indicate another possible volcano on Jupiter moon Io

First Global Maps of Pluto and Charon from New Horizons Published

Europa's Ocean Ascending









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.