Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
UI instruments aboard twin NASA spacecraft set for launch August 24
by Gary Galluzzo for UI News
Iowa City IA (SPX) Aug 23, 2012


An artist's rendering shows the twin Radiation Belt Storm Probes (RBSP) satellites in tandem orbit above the Earth. Image credit: NASA.

On Aug. 24, NASA will launch two identical satellites from Cape Canaveral, Fla., to begin its Radiation Belt Storm Probes (RBSP) mission to study the extremes of space weather and help scientists improve space weather forecasts. Why should you care?

Because, says a University of Iowa space physics researcher, if you've ever used a cell phone, traveled by plane, or stayed up late to catch a glimpse of the northern lights, then you have been affected by space weather without even knowing about it.

Scientists want to better understand how the Van Allen radiation belts-named after UI astrophysicist James A. Van Allen-react to solar changes, thereby contributing to Earth's space weather. Changes in space weather can disable satellites, overload power grids, and disrupt GPS service.

In addition, coronal mass ejections (CMEs) periodically release billions of tons of charged particles from the sun into space. And, with the 11-year solar cycle expected to peak in 2013, there is an increased potential for CME-caused power surges to knock out electric transformers that support lighting, heating, air conditioning, sewage treatment, and many other necessities of daily life.

Space weather storms are made up of gusts of electrically charged particles-atoms that have been stripped of electrons-that constantly flow outward from the sun. When these particles reach the Earth, some become trapped in the Earth's magnetosphere to form the Van Allen radiation belts, two donut-shaped regions that encircle Earth. The RBSP mission will collect data on particles, magnetic and electric fields, and waves to reveal how the belts change in space and over time.

Craig Kletzing [KLET-zing], F. Wendell Miller Professor of physics and astronomy in the University of Iowa College of Liberal Arts and Sciences, is the principal investigator for the UI team that designed the Electromagnetic Instrument Suite with Integrated Science (EMFISIS). One of five different RBSP instrument pairs, or suites, EMFISIS is a $30 million NASA project to study how various amounts of space radiation form and change during space storms.

The other four instrument suites are directed by teams from the University of New Hampshire, the University of Minnesota, the New Jersey Institute of Technology, and the National Reconnaissance Office. The two RBSP spacecraft-each weighing 1,455 pounds-were constructed for NASA at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md.

Says Kletzing: "The Radiation Belt Storm Probes is actually the first NASA mission to be launched in more than two decades that's going back to revisit the radiation belts since they were discovered by the late University of Iowa professor James A. Van Allen over 50 years ago. There are still lots of things we don't understand about how they work, about how the sun delivers energy to the local environment around the Earth, and particularly about how it creates these two bands of very energetic particles that we call the radiation belts."

Like many other NASA projects, the Radiation Belt Storm Probes mission has two main reasons for existing: it will gather practical information and it is a part of mankind's continuing exploration of space.

"The practical reason is: that's a part of space that we utilize. The outer radiation belts are where all our communication satellites exist, the various things that make sure that GPS works, as well as telephone communications," Kletzing says. "They can be affected by these particles, and, in fact, it has happened that those satellites have actually been knocked out by radiation.

"So, understanding these effects and how they happen and, hopefully, get beyond to where we can do some level of prediction is a very important practical reason.

"Additionally, the various manned missions that NASA has planned to go beyond the Space Station to places like the moon or Mars also require transiting through this region," he says. "So, understanding the right time to go-when the particles are fewest so that you don't impact human health-is a very important thing to understand."

The less practical reason for undertaking the RBSP project is familiar to mountain climbers and other explorers-because it's there.

"We want to know how the heck the darn thing works," he says.

"We've learned from science over the years that you can't always predict that one thing you learn here will influence another field and allow whole breakthroughs to occur. So it's really both. The practical, direct reasons, but also if we understand the physics of the radiation belts, that helps us understand physics in other stellar systems and all sorts of other phenomena that are related."

Here's how the RBSP project will work:

+ One rocket will launch two satellites.

+ The two satellites will orbit the Earth from about 300 miles above the Earth out to as far as 25,000 miles at apogee.

+ The satellites will be given slightly different orbits so that over time, one will run ahead of the other.

+ They will fly nearly identical orbits that cover the entire radiation belt region, lapping each other during the course of the two-year mission.

"We talk about one spacecraft lapping the other," says Kletzing.

"What makes that exciting is that both spacecraft are exactly the same-all the same sets of measurements are on the two different spacecraft. So, for the first time, we'll have completely identical sets of instruments on both sides that we can compare between the two satellites. And actually say, 'Oh, this is happening here, and that's happening there.' Maybe they work together or maybe they're different things. But we've never had a pair of identical spacecraft in this region before."

The RBSP project is a collaborative effort between research teams at several universities, with the Johns Hopkins Applied Physics Laboratory having constructed the spacecraft. The UI's EMFISIS instruments will measure the various kinds of waves the spacecraft will encounter.

At the UI, Kletzing, together with UI collaborator and co-investigator Bill Kurth, built the Waves and search coil magnetometer sections for the EMFISIS investigation. The UI also worked with the Goddard Space Flight Center, which built a magnetometer as a part of the UI instrument suite. Also, the University of New Hampshire provided the computer that controls all of the EMFASIS measurements.

So, the hardware part of the UI project is actually a three-institution collaboration, Kletzing says, and the theory and modeling teams at UCLA and Los Alamos National Laboratory bring the total collaboration to five institutions.

It's not surprising that the UI is helping give scientists a clearer picture of space weather in the Van Allen radiation belts. The study of space weather really began at Iowa in 1958, when UI space physicist James A. Van Allen discovered the radiation belts using data from Explorer 1, the first successful U.S. spacecraft. Van Allen's discovery improved our understanding of the Earth and the solar system and created a new field of research called magnetospheric physics.

.


Related Links
RBSP at NASA
RBSP at APL
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
Magnetic Turbulence Trumps Collisions to Heat Solar Wind
Warwick UK (SPX) Aug 22, 2012
New research led by University of Warwick physicist Dr Kareem Osman has provided significant insight into how the solar wind heats up when it should not. The solar wind rushes outwards from the raging inferno that is our Sun, but from then on the wind should only get cooler as it expands beyond our solar system since there are no particle collisions to dissipate energy. However, the solar ... read more


SOLAR SCIENCE
Chinese firm to send Spanish rover to moon in 2014

LRO Spectrometer Detects Helium in Moon's Atmosphere

NASA's 'Mighty Eagle' Robotic Prototype Lander Flies Again at Marshall

Roscosmos Announces Tender for Moon Rocket Design

SOLAR SCIENCE
NASA's Mars rover makes first test drive

First Words of Safe Landing on Mars - Tango Delta Nominal

NASA Mars Rover Begins Driving at Bradbury Landing

Lockheed Martin to Build Spacecraft for Insight Mars Lander

SOLAR SCIENCE
For US students, plane tickets, TVs are relics

Voyager at 35: Break on Through to the Other Side

XCOR Becomes Corporate Sponsor of Uwingu, a Space Apps Company

Florida Spaceport Stakes Claim to Commercial Missions

SOLAR SCIENCE
China unveils ambitious space projects

Is China Going to Blast Past America in Space?

Hong Kong people share joy of China's manned space program

China's Long March-5 carrier rocket engine undergoes testing

SOLAR SCIENCE
Space station orbit successfully adjusted

ISS Orbit Adjustment to Continue on August 22

Cosmonauts Begin First Expedition 32 Spacewalk

ATV-3 Vehicle Fails to Adjust Space Station Orbit

SOLAR SCIENCE
ASTRA 2F touches down in French Guiana for Arianespace's next Ariane 5 dual-passenger mission

Satellite preparations move into full swing for the next Arianespace Soyuz mission from French Guiana

Russian Booster Rocket Lifts US Satellite in Seaborne Launch

India's GSAT-10 satellite continues its checkout for the upcoming Arianespace Ariane 5 mission

SOLAR SCIENCE
First Evidence Discovered of Planet's Destruction by Its Star

Exoplanet hosting stars give further insights on planet formation

Five Potential Habitable Exoplanets Now

RIT Leads Development of Next-generation Infrared Detectors

SOLAR SCIENCE
Scientists shed light on glowing materials

New space-age insulating material for homes, clothing and other everyday uses

Global tablet sales to top 100 million in 2012: survey

Next Generation 3-D Theater: Optical Science Makes Glasses a Thing of the Past




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement