Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
UI's Scudder makes first observations of process linked to northern lights
by Staff Writers
Iowa City IA (SPX) Jun 07, 2012


The aurorae are a byproduct of this change in how the strands of spaghetti are connected, since with the hole, charged particles from the sun are now allowed access into the atmosphere below the Earth's magnetic shield."

A University of Iowa researcher wants you to visualize a plate of spaghetti when you think of the northern lights. That's because Jack Scudder, UI professor of physics and astronomy, and his colleagues have reached a milestone in describing how the northern lights work by way of a process called "magnetic reconnection."

The details are contained in a paper published in the journal Physical Review Letters; however, the process is best imagined as untangling twisted strands of spaghetti.

Diffuse gas-called plasma-flows outward from the sun as the "solar wind" and carries with it magnetic field lines ("spaghetti") from the sun.

The entanglement between magnetic field lines (spaghetti) from the sun and other field lines (spaghetti) anchored in the Earth's core occurs when these field lines are brought together by gusts of solar wind.

"In the process of smoothing this entanglement, one or more holes are created that now link field lines, with one originating in the sun and the other in the Earth's metallic core," says Scudder.

"This linkage allows charged particles to cross a previously forbidden boundary that separates the Earth's volume from the sun's. The formation of these inter-connections represents a stress reduction.

The aurorae are a byproduct of this change in how the strands of spaghetti are connected, since with the hole, charged particles from the sun are now allowed access into the atmosphere below the Earth's magnetic shield."

One result is the beautiful colors of the northern lights.

"Most effects of solar weather that have an earthly influence gain entrance through holes of this type that are in place when a solar disturbance hits," Scudder says. "In this sense the sites of reconnection are the 'keyholes' for the intrusion of solar weather into near Earth space.

"After more than 30 years of research, my colleagues and I have announced a milestone discovery in astrophysics-the first experimentally resolved and unequivocal site of collision-less magnetic reconnection, in which magnetic field energy is converted into energetic particles," Scudder says.

"When this process occurs, previously separated volumes of space become interconnected by magnetic fields, providing new highways for the prompt interchange of high temperature gases."

Because magnetic reconnection is thought to occur elsewhere in the universe, Scudder and his colleagues are delighted to have observed evidence of a hard-to-see hole.

In astronomical terms, the size of a hole is relatively small-about 1 kilometer in diameter seen at a distance of 57,000 kilometers from the Earth. If magnetic reconnection were occurring on the surface of the sun, at another star, or at a planet in another solar system, scientists would never be able to see it, Scudder says.

Consequently, Scudder's work is all the more important because it serves to "bench test," or prove, an astrophysical process that mankind will never be able to directly corroborate in deep space.

In addition to being small, the hole Scudder observed was in constant motion.

Because the hole was in an unknown state of motion relative to the spacecraft, it could have been traversed many times previously without having been detected. To correct for this situation, researchers developed new techniques to reduce the time interval between "snapshots" by a factor of 11 using the same detector and without flying a new detector.

"This 'trick' is like having access to a microscope for the first time to re-examine data that was thought to have been acquired too slowly to find these holes.

Resolving these holes in magnetic fields is somewhat similar to looking at stagnant water through a microscope for the first time and seeing the writhing molecular behavior that was only suspected previously," he says.

Scudder and his colleagues were able to observe the magnetic reconnection site in space by using data from NASA's Polar spacecraft and its Hydra, MFE and EFI experiments. Scudder says the process he observed is active not just in creating the northern lights, but many other astronomical phenomena as well.

"The experimental documentation of the physical process that enables this phenomenon provides the first support of the prevailing theories for explaining the production of solar flares, x-rays from black holes, as well as the causes of the aurorae that brilliantly light up the polar skies," he says.

The manner in which Scudder and his associates made the landmark observation involved five different comparisons across three independent detectors to reinforce the detection, similar to the teamwork involved in professional sports.

As part of NASA's Polar/Hydra program at the UI, data from three separate experiments were shown to reproduce the extreme signatures predicted by computer models of the process.

These signatures were so unusual that nothing approaching their extremes had been recorded in 50 years of space research. Using the largest computer resources at NASA, the National Science Foundation, and the U.S. Department of Energy, the reference computer models solved six trillion equations of motion in order to predict the observations for the three experiments.

By showing scientists what combinations of observations can help identify these regions, Scudder's work will save time and energy for researchers preparing to explore magnetic reconnection in detail by using NASA's Magnetospheric Multi-Scale (MMS) mission set for launch in 2014.

Scudder's collaborators and co-authors include UI graduate students R.D. Holdaway and J.Y. Lopez. His other colleagues are H. Karimabadi and V. Roytershteyn of the University of California, San Diego; W.S. Daughton of the Los Alamos National Laboratory, N.M.; and C.T. Russell of UCLA.

.


Related Links
University of Iowa
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
UNH to Analyze "Bellwether" Solar Event Data from European Satellite
Durham NH (SPX) Jun 07, 2012
When the sun launched a moderate, or M-class, solar flare May 17, 2012, it was still one of the largest eruptions seen since late January when our star began to rouse from an anomalously long quiet period. But the event was not just an additional solar wake-up call; it produced something that has the solar physics community puzzled and scientists from the University of New Hampshire poised ... read more


SOLAR SCIENCE
UA Lunar-Mining Team Wins National Contest

NASA Lunar Spacecraft Complete Prime Mission Ahead of Schedule

NASA Offers Guidelines To Protect Historic Sites On The Moon

Neil Armstrong gives rare interview - to accountant

SOLAR SCIENCE
Wind may have driven avalanches on Martian dunes

On The Hunt For Light-Toned Veins Of Gypsum

Mars missions may learn from meteor Down Under

Waking Up with the Sun's Rays

SOLAR SCIENCE
European Union launches latest space regulation efforts

CU-Boulder students to help NASA develop plant food production for deep space

China calls for inclusive development of outer space

New Moon for India

SOLAR SCIENCE
What will China's Taikonauts do aboard Tiangong 1?

Why is China sending a woman into space?

China launches telecommunication satellite

Tiangong 1 Ready To Meet Shenzhou 9

SOLAR SCIENCE
Capillarity in Space - Then and Now, 1962-2012

Dragon on board

SpaceX Launches Falcon 9 Dragon on Historic Mission

SpaceX Dragon Transports Student Experiments to Space Station

SOLAR SCIENCE
Another Ariane 5 begins its initial build-up at the Spaceport

Boeing Receives DARPA Airborne Satellite Launch Study Contract

Sea Launch Delivers the Intelsat 19 Spacecraft into Orbit

SpaceX Dragon capsule splash lands in Pacific

SOLAR SCIENCE
Tiny Planet-Finding Mirrors Borrow from Webb Telescope Playbook

Astronomers Probe 'Evaporating' Planet Around Nearby Star with Hobby-Eberly Telescope

Venus transit may boost hunt for other worlds

NSO To Use Venus Transit To Fine-Tune Search For Other Worlds

SOLAR SCIENCE
Samsung vows US launch of Galaxy despite Apple suit

Repelling the drop on top

Elvis Lives! US firm to create 'virtual' Presley

Taiwan's HTC denies Microsoft snub over Windows 8




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement