. 24/7 Space News .
TECH SPACE
Chemists functionalize boron nitride with other nano systems
by Staff Writers
Chicago IL (SPX) Sep 26, 2018

Treatment with a superacid causes boron nitride layers to separate and become positively charged, allowing for it to interface with other nanoparticles, like gold.

Researchers at the University of Illinois at Chicago have discovered a route to alter boron nitride, a layered 2D material, so that it can bind to other materials, like those found in electronics, biosensors and airplanes, for example. Being able to better-incorporate boron nitride into these components could help dramatically improve their performance.

The scientific community has long been interested in boron nitride because of its unique properties - it is strong, ultrathin, transparent, insulating, lightweight and thermally conductive - which, in theory, makes it a perfect material for use by engineers in a wide variety of applications. However, boron nitride's natural resistance to chemicals and lack of surface-level molecular binding sites have made it difficult for the material to interface with other materials used in these applications.

UIC's Vikas Berry and his colleagues are the first to report that treatment with a superacid causes boron nitride layers to separate into atomically thick sheets, while creating binding sites on the surface of these sheets that provide opportunities to interface with nanoparticles, molecules and other 2D nanomaterials, like graphene. This includes nanotechnologies that use boron nitride to insulate nano-circuits.

Their findings are published in ACS Nano, a journal of the American Chemical Society.

"Boron nitride is like a stack of highly sticky papers in a ream, and by treating this ream with chlorosulfonic acid, we introduced positive charges on the boron nitride layers that caused the sheets to repel each other and separate," said Berry, associate professor and head of chemical engineering at the UIC College of Engineering and corresponding author on the paper.

Berry said that "like magnets of the same polarity," these positively charged boron nitride sheets repel one another.

"We showed that the positive charges on the surfaces of the separated boron nitride sheets make it more chemically active," Berry said. "The protonation - the addition of positive charges to atoms - of internal and edge nitrogen atoms creates a scaffold to which other materials can bind."

Berry said that the opportunities for boron nitride to improve composite materials in next-generation applications are vast.

"Boron and nitrogen are on the left and the right of carbon on the periodic table and therefore, boron-nitride is isostructural and isoelectronic to carbon-based graphene, which is considered a 'wonder material,'" Berry said. This means these two materials are similar in their atomic crystal structure (isostructural) and their overall electron density (isoelectric), he said.

"We can potentially use this material in all kinds of electronics, like optoelectronic and piezoelectric devices, and in many other applications, from solar-cell passivation layers, which function as filters to absorb only certain types of light, to medical diagnostic devices," Berry said.

Research paper


Related Links
University of Illinois at Chicago
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
New world record magnetic field
Washington DC (SPX) Sep 25, 2018
A group of scientists at the University of Tokyo has recorded the largest magnetic field ever generated indoors - a whopping 1,200 tesla, as measured in the standard units of magnetic field strength. By comparison, this is a field strength about 400 times higher than those generated by the huge, powerful magnets used in modern hospital MRI machines, and it is about 50 million times stronger than the Earth's own magnetic field. Stronger magnetic fields have previously been achieved in outdoor ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Orion's first Service Module integration complete

NASA Will Pay Anyone $15,700 to Stay in Bed for 70 Days

Yusaku Maezawa: Japanese spaceman with a taste for art

Fly me to the Moon? A look at the space-tourism race

TECH SPACE
Roscosmos Finds No Flaw in Fabric of Soyuz Vehicle at Assembly Stage - Source

100th Ariane 5 will carry Horizons 3e and Azerspace-2 Intelsat 38

SpaceX Open to Deploying Orbital Weapons for US

Scientists to study new propulsion idea for spacecraft

TECH SPACE
Recent tectonics on Mars

ExoMars orbiter highlights radiation risk for Mars astronauts

Attempting Contact With Opportunity Multiple Times A Day

River basin provides evidence of ancient ocean on Mars

TECH SPACE
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

TECH SPACE
CPI Antenna Systems Integrates New Large-Aperture Satellite Earth Stations into Its Product Line

Creating Dynamism in Indian Space Ecosystem

GMV primes the biggest contract ever signed by Spain's space industry

Making space exploration real on Earth

TECH SPACE
New world record magnetic field

UTA researcher creates hydrogels capable of complex movement

Scientists develop new way to prevent spacecraft errors

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry

TECH SPACE
The spark that created life

Planet Vulcan Found

When is a star not a star?

TESS Shares First Science Image in Hunt to Find New Worlds

TECH SPACE
Juno image showcases Jupiter's brown barge

New research suggest Pluto should be reclassified as a planet

Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.