Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
UCI team is first to capture motion of single molecule in real time
by Staff Writers
Irvine CA (SPX) Sep 18, 2014


Ara Apkarian professor of chemistry, and his colleague Eric Potma, associate professor of chemistry, opens a window into the strange realm of quantum mechanics - where nanoscopic bits of matter seemingly defy the logic of classical physics. Image courtesy UC Irvine.

UC Irvine chemists have scored a scientific first: capturing moving images of a single molecule as it vibrates, or "breathes," and shifts from one quantum state to another. The groundbreaking achievement, led by Ara Apkarian, professor of chemistry, and Eric Potma, associate professor of chemistry, opens a window into the strange realm of quantum mechanics - where nanoscopic bits of matter seemingly defy the logic of classical physics.

This could lead to a wide variety of important applications, including lightning-fast quantum computers and uncrackable encryption of private messages.

It also moves researchers a step closer to viewing the molecular world in action - being able to see the making and breaking of bonds, which controls biological processes such as enzymatic reactions and cellular dynamics.

The August issue of Nature Photonics features this breakthrough as its cover story.

"Our work is the first to capture the motion of one molecule in real time," Apkarian said. While still images of single molecules have been possible since the 1980s, recording a molecule's extremely rapid movements had proven elusive.

In addition to using precisely tuned, ultrafast lasers and microscopes, the researchers had to equip the molecule with a tiny antenna consisting of two gold nanospheres in order to track its activity and record measurements over the course of an hour.

When the many repeated measurements were averaged, an astonishing finding emerged: The molecule was oscillating from one quantum state to another.

The scientists have produced a movie in which a small, glowing dot appears to emit pulses of bright light. "That's the light broadcast from the antenna every time the molecule completes a cycle of its vibrational motion," Apkarian said.

"The bond moves at a rate of 1013 cycles per second - a million, million times 10 cycles in one second." Making the movie was like freeze-frame photography with a very fast flash and repeating the measurement over and over again.

Seeing a molecule as it moves is "essential to a deeper understanding of how it forms and breaks chemical bonds," Potma said. "The aim of the present experiment was to demonstrate that we can capture a molecule in motion on its own timescale."

The next and even more ambitious goal is to acquire moving images of molecules in their natural environment without tethering them to an antenna. "Ultimately, we'd like to be able to [examine] a molecule ... as it's undergoing chemistry," Apkarian said.

He and Potma are members of the Center for Chemistry at the Space-Time Limit, a research entity funded by the National Science Foundation that involves about 60 scientists on five campuses.

.


Related Links
UC Irvine
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Three's a charm: NIST detectors reveal entangled photon triplets
Boulder CO (SPX) Sep 18, 2014
Researchers at the University of Waterloo in Canada have directly entangled three photons in the most technologically useful state for the first time, thanks in part to superfast, super-efficient single-photon detectors developed by the National Institute of Standards and Technology (NIST). Entanglement is a special feature of the quantum world in which certain properties of individual par ... read more


TIME AND SPACE
Lunar explorers will walk at higher speeds than thought

Year's final supermoon is a Harvest Moon

China Aims for the Moon, Plans to Bring Back Lunar Soil

Electric Sparks May Alter Evolution of Lunar Soil

TIME AND SPACE
NASA's MAVEN spacecraft enters Mars orbit

Why India went to Mars

Two Martian Probes Set to Orbit Red Planet

India to enter Mars orbit on September 24

TIME AND SPACE
MIT researchers developing tight-fitting space suits of the future

Shrink-wrapping spacesuits

Internet moguls Musk, Bezos shake up US space race

Space: The final frontier ... open to the public

TIME AND SPACE
Astronauts eye China's future space station

China eyes working with other nations as station plans develop

China completes construction of advanced space launch facility

China to launch second space lab in 2016: official

TIME AND SPACE
Halfway through Blue Dot mission

ISS Crew Trains to Capture Dragon

Yeast, the final frontier

Boeing, SpaceX to send astronauts to space station

TIME AND SPACE
SpaceX is not only taking a 3D printer to space, but mice too

United Launch Alliance Launches Its 60th Mission from Cape Canaveral

Lockheed Martin-built CLIO Satellite Launched From Cape Canaveral

SpaceX cargo capsule nears International Space Station

TIME AND SPACE
Chandra Finds Planet That Makes Star Act Deceptively Old

Solar System Simulation Reveals Planetary Mystery

'Hot Jupiters' provoke their own host suns to wobble

First evidence for water ice clouds found outside solar system

TIME AND SPACE
Scientists come closer to the industrial synthesis of a material harder than diamond

Larry Ellison releases helm of mighty Oracle ship

Mussel-inspired MIT glue may have naval, medical applications

'Priceless' 600-tonne jade deposit found in China




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.