. 24/7 Space News .
CHIP TECH
Two-dimensional materials unlock the path to ultra-low-power transistors
by Staff Writers
York UK (SPX) Nov 09, 2017


illustration only

An international team of scientists has discovered a new route to ultra-low-power transistors using a graphene-based composite material.

As transistors are squeezed into ever smaller areas within computer chips, the semiconductor industry struggles to contain overheating in devices.

Now researchers from the University of York and Roma Tre University believe the solution lies in composite materials built from monolayers of graphene and the transition metal dichalcogenide (TMDC).They discovered these materials could be used to achieve a fine electrical control over the electron's spin - its tiny compass needle.

The new research, published in the journal Physical Review Letters, could lead the way to much needed low-energy consumption electronics.

Lead researcher Dr Aires Ferreira, of the University of York's Department of Physics, said: "For many years, we have been searching for good conductors allowing efficient electrical control over the electron's spin.

"We found this can be achieved with little effort when two-dimensional graphene is paired with certain semiconducting layered materials. Our calculations show that the application of small voltages across the graphene layer induces a net polarization of conduction spins.

"We believe that our predictions will attract substantial interest from the spintronics community. The flexible, atomically thin nature of the graphene-based structure is a major advantage for applications. Also, the presence of a semiconducting component opens up the possibility for integration with optical communication networks."

The electron's spin is like a tiny, point-like magnet which can point only in two directions, up or down. In materials where a major fraction of electrons' spins is aligned, a magnetic response is produced, which can be used to encode information.

'Spin currents' - built from 'up' and 'down' spins flowing in opposite directions - carry no net charge, and therefore in theory, produce no heating. The control of spin information would therefore open the path towards ultra-energy-efficient computer chips. The team of researchers showed that when a small current is passed through the graphene layer, the electrons' spin polarize in plane due to 'spin-orbital' forces brought about by the proximity to the TMDC base. They also showed that the efficiency of charge-to-spin conversion can be quite high even at room temperature.

Manuel Offidani, a PhD student with York's Department of Physics, carried out most of the complex calculations in this study. He said: "The current-induced polarization of the electron's spin is an elegant relativistic phenomenon that arises at the interface between different materials.

"We chose graphene mainly because of its superb structural and electronic properties. In order to enhance the relativistic effects experienced by charge carriers in graphene, we investigated the possibility of matching it with recently discovered layered semiconductors."

Professor Roberto Raimondi, who leads the spintronics group at Roma Tre University, said: "The possibility of orienting the electron spin with electrical currents is attracting a lot of attention in the spintronics community and arises generally as a consequence of specific symmetry conditions.

"As such this phenomenon represents a perfect example where fundamental and applied research go happily together. In this respect, our calculations demonstrate that graphene combined with the transition metal dichalcogenides is an ideal platform where abstract theoretical principles may find immediate application in showing the way to experimental and technological development."

Current-induced spin polarization in non-magnetic media was first demonstrated in 2001 in semiconductors and, more recently, in metallic hetero-interfaces. Now the researchers predict that a similar effect occurs in graphene on TMDC monolayer.

Surprisingly they found that the unique character of electronic states in graphene enable charge-to-spin conversion efficiency of up to 94 per cent. This opens up the possibility of a graphene-based composite material becoming the basis for ultra-compact and greener spin-logic devices.

Dr Mirco Milletari, a former member of the spintronics group at Roma Tre University, said: "This work follows insights gained from understanding fundamental laws that enabled us to envisage systems where the efficiency of charge-to-spin conversion can be optimal for technological applications. In particular, the much needed low-energy consumption electronics that will improve durability and performances of future devices."

Research paper

CHIP TECH
University of Utah researchers develop milestone for ultra-fast communications and computing
Salt Lake City UT (SPX) Nov 08, 2017
A mineral discovered in Russia in the 1830s known as a perovskite holds a key to the next step in ultra-high-speed communications and computing. Researchers from the University of Utah's departments of electrical and computer engineering and physics and astronomy have discovered that a special kind of perovskite, a combination of an organic and inorganic compound that has the same structur ... read more

Related Links
University of York
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA Moves Up Critical Crew Safety Launch Abort Test

Brazil's tech junkies seek healing at digital detox clinic

NanoRacks launches Full External Cygnus Deployer on OA-8 to ISS

The road to Orion's launch

CHIP TECH
The state of commercial spaceports in 2017

Orbital ATK Successfully Tests First Motor Case for Next Generation Launch Vehicle

Orbital ATK launches eighth cargo mission to space

Vega launches Earth observation satellite for Morocco

CHIP TECH
How long can microorganisms live on Mars

NASA Opens $2 Million Third Phase of 3D-Printed Habitat Competition

Insight will carry over two million names to Mars

Opportunity Does a Wheelie and is Back on Solid Footing

CHIP TECH
China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

CHIP TECH
Astronaut meets volcano

European Space Week starts in Estonia

New Chinese sat comms company awaits approval

Myanmar to launch own satellite system-2 in 2019: vice president

CHIP TECH
Plasma from lasers can shed light on cosmic rays, solar eruptions

Leonardo tapped by British Royal Air Force for radar testing equipment

A new way to mix oil and water

Building better silk

CHIP TECH
Astronomers See Moving Shadows Around Planet-Forming Star

Scientists find potential 'missing link' in chemistry that led to life on earth

18-Month Twinkle in a Forming Star Suggests a Very Young Planet

Overlooked Treasure: The First Evidence of Exoplanets

CHIP TECH
Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

Juno Aces 8th Science Pass of Jupiter, Names New Project Manager









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.