. 24/7 Space News .
CHIP TECH
Two-dimensional materials skip the energy barrier by growing one row at a time
by Staff Writers
Richland WA (SPX) Dec 12, 2018

The peptides in this highly ordered two-dimensional array avoid the expected nucleation barrier by assembling in a row-by-row fashion.

A new collaborative study led by a research team at the Department of Energy's Pacific Northwest National Laboratory and University of California, Los Angeles could provide engineers new design rules for creating microelectronics, membranes, and tissues, and open up better production methods for new materials. At the same time, the research, published in the journal Science, helps uphold a scientific theory that has remained unproven for over a century.

Just as children follow a rule to line up single file after recess, some materials use an underlying rule to assemble on surfaces one row at a time, according to the study done at PNNL, the University of Washington, UCLA, and elsewhere.

Nucleation - that first formation step - is pervasive in ordered structures across nature and technology, from cloud droplets to rock candy. Yet despite some predictions made in the 1870s by the American scientist J. Willard Gibbs, researchers are still debating how this basic process happens.

The new study verifies Gibbs' theory for materials that form row by row. Led by UW graduate student Jiajun Chen, working at PNNL, the research uncovers the underlying mechanism, which fills in a fundamental knowledge gap and opens new pathways in materials science.

Chen used small protein fragments called peptides that show specificity, or unique belonging, to a material surface. The UCLA collaborators have been identifying and using such material-specific peptides as control agents to force nanomaterials to grow into certain shapes, such as those desired in catalytic reactions or semiconductor devices. The research team made the discovery while investigating how a particular peptide - one with a strong binding affinity for molybdenum disulfide - interacts with the material.

"It was complete serendipity," said PNNL materials scientist James De Yoreo, co-corresponding author of the paper and Chen's doctoral advisor. "We didn't expect the peptides to assemble into their own highly ordered structures."

That possibly happened because "this peptide was identified from a molecular evolution process," adds co-corresponding author Yu Huang, a materials scientist at UCLA. "It appears nature does find its way to minimize energy consumption and to work wonders."

Row by row
The transformation of liquid water into solid ice requires the creation of a solid-liquid interface. According to Gibbs' classical nucleation theory, although turning the water into ice saves energy, creating the interface costs energy. The tricky part is the initial start - that's when the surface area of the new particle of ice is large compared to its volume, so it costs more energy to make an ice particle than is saved.

Gibbs' theory predicts that if the materials can grow in one dimension, meaning row by row, no such energy penalty would exist. Then the materials can avoid what scientists call the nucleation barrier and are free to self-assemble.

There has been recent controversy over the theory of nucleation. Some researchers have found evidence that the fundamental process is actually more complex than that proposed in Gibbs' model.

But "this study shows there are certainly cases where Gibbs' theory works well," De Yoreo said.

Previous studies had already shown that some organic molecules, including peptides like the ones in the Science paper, can self-assemble on surfaces. But at PNNL, De Yoreo and his team dug deeper and found a way to understand how molecular interactions with materials impact their nucleation and growth.

They exposed the peptide solution to fresh surfaces of a molybdenum disulfide substrate, measuring the interactions with atomic force microscopy. Then they compared the measurements with molecular dynamics simulations.

De Yoreo and his team determined that even in the earliest stages, the peptides bound to the material one row at a time, barrier-free, just as Gibbs' theory predicts.

The atomic force microscopy high imaging speed allowed the researchers to see the rows just as they were forming. The results showed the rows were ordered right from the start and grew at the same speed regardless of their size - a key piece of evidence. They also formed new rows as soon as enough peptide was in the solution for existing rows to grow; that would only happen if row formation is barrier-free.

Better control
This row by row process provides clues for the design of 2D materials. Currently, to form certain shapes, designers sometimes need to put systems far out of equilibrium, or balance. That is difficult to control, said De Yoreo.

"But in 1D, the difficulty of getting things to form in an ordered structure goes away," he added. "Then you can operate right near equilibrium and still grow these structures without losing control of the system."

It could change assembly pathways for those engineering microelectronics or even bodily tissues.

Huang's team at UCLA has demonstrated new opportunities for devices based on 2D materials assembled through interactions in solution. But she said the current manual processes used to construct such materials have limitations, including scale-up capabilities.

"Now with the new understanding," said Huang, "we can start to exploit the specific interactions between molecules and 2D materials for automatous assembly processes."

The next step, said De Yoreo, is to make artificial molecules that have the same properties as the peptides studied in the new paper - only more robust.

At PNNL, he and his team are looking at stable peptoids, which are as easy to synthesize as peptides but can better handle the temperatures and chemicals used in the processes to construct the desired materials.

Research Report: Building two-dimensional materials one row at a time: Avoiding the nucleation barrier


Related Links
Pacific Northwest National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Researchers develop method to transfer entire 2D circuits to any smooth surface
Houston TX (SPX) Dec 07, 2018
What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that. Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices to report on what they perceive. Electronically active 2D materials have been the subject of much research since the introduction of graphene in 2004. Even though they are often to ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
George H.W. Bush's overlooked legacy in space exploration

UConn Research Project Heading to International Space Station

NASA sends new research, hardware to Space Station on SpaceX mission

PoSSUM scientist-astronaut candidates test novel space suits and biometric monitoring systems

CHIP TECH
Tesla CEO Elon Musk taunts US financial regulatory agency

Rocket Lab prepares to launch historic CubeSat mission for NASA

Arianespace Orbits GSAT-11 and Geo-Kompsat-2A for India and South Korea

SpaceX launches cargo, but fails to land rocket

CHIP TECH
InSight's robotic arm ready for some lifting on Mars

NASA's InSight lander 'hears' wind on Mars

NASA's Mars InSight Flexes Its Arm

Mars 2020 rover mission camera system 'Mastcam-Z' testing begins at ASU

CHIP TECH
Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

CHIP TECH
CAT rules in favour of Ofcom's EAN authorisation decision

Fleet Space Technologies' Centauri launched aboard SpaceX Falcon 9

Roscosmos Targeted by Info Attack to Hamper Revival of Space Industry in Russia

SAS Signs Distribution Agreement with GlobalSat Group

CHIP TECH
Gaming firm settles VR lawsuit with Facebook-owned Oculus

Green production of chemicals for industry

Scientists discover a material breaking modern chemistry laws

FEFU young scientists developed unique method to calculate transparent materials porosity

CHIP TECH
Life in Deep Earth totals 15 to 23 billion tons of carbon

An exoplanet loses its atmosphere in the form of a tail

Unknown treasure trove of planets found hiding in dust

Radio Search for Artificial Emissions from 'Oumuamua

CHIP TECH
Radio JOVE From NASA: Tuning In to Your Local Celestial Radio Show

The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning

Encouraging prospects for moon hunters

Evidence for ancient glaciation on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.