. 24/7 Space News .
STELLAR CHEMISTRY
Twin baby stars grow amongst a twisting network of gas and dust
by Staff Writers
Munich, Germany (SPX) Oct 07, 2019

illustration only

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the clouds of interstellar dust called the Pipe nebula. Previous observations of this binary system showed the outer structure.

Now, thanks to the high resolution of the Atacama Large Millimeter/submillimeter Array (ALMA) and an international team of astronomers led by scientists from the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, we can see the inner structure of this object.

"We see two compact sources that we interpret as circumstellar disks around the two young stars," explains Felipe Alves from MPE who led the study. A circumstellar disk is the ring of dust and gas that surrounds a young star. The star accrete matter from the ring to grow bigger.

"The size of each of these disks is similar to the asteroid belt in our Solar System and the separation between them is 28 times the distance between the Sun and the Earth," notes Alves.

The two circumstellar disks are surrounded by a bigger disk with a total mass of about 80 Jupiter masses, which displays a complex network of dust structures distributed in spiral shapes - the pretzel loops.

"This is a really important result," stresses Paola Caselli, managing director at MPE, head of the Centre of Astrochemical Studies and co-author of the study. "We have finally imaged the complex structure of young binary stars with their feeding filaments connecting them to the disk in which they were born. This provides important constraints for current models of star formation."

The baby stars accrete mass from the bigger disk in two stages. The first stage is when mass is transferred to the individual circumstellar disks in beautiful twirling loops, which is what the new ALMA image showed.

The data analysis also revealed that the less-massive but brighter circumstellar disk - the one in the lower part of the image - accretes more material. In the second stage, the stars accrete mass from their circumstellar disks.

"We expect this two-level accretion process to drive the dynamics of the binary system during its mass accretion phase," adds Alves. "While the good agreement of these observations with theory is already very promising, we will need to study more young binary systems in detail to better understand how multiple stars form."

Research paper


Related Links
ESO
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Two ancient migration events in the Andromeda Galaxy
Hilo HI (SPX) Oct 03, 2019
Large galaxies like the one we live in, the Milky Way, are believed to grow through repeated merging with smaller, dwarf galaxies. Gas and dwarf galaxies in the vast cosmic web follow the gravitational paths laid out by dark matter - traversing filaments, they migrate slowly toward collections of dark matter and assemble into large galaxies. As dwarf galaxies are pulled in by gravity, they are also pulled apart, leaving behind long trailing streams of stars and compact star clusters. Astronomers h ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Russia bestows medal on US astronaut in failed launch

Astronauts will spend much of October outside the space station

Deep space exploration isn't a far-fetched possibility

Raytheon to help Jet Propulsion Lab explore the universe

STELLAR CHEMISTRY
Virgin Orbit selects RAF pilot as it plans satellite launch program

Jet taking off from Florida will launch NASA weather satellite

Sea Launch platform stripped of foreign equipment, ready to leave US for Russia

SwRI hypersonic research spotlights future flight challenges

STELLAR CHEMISTRY
Curiosity findings suggest Mars once featured dozens of shallow briny ponds

NASA's Mars 2020 rover tests descent-stage separation

NASA's Curiosity Rover finds an ancient oasis on Mars

UK eases sanctions on Moscow to allow activities related to joint space mission to Mars

STELLAR CHEMISTRY
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

STELLAR CHEMISTRY
Competition to find business ideas that are out of this world

UK space skills support sustainable development

Talking space with the next generation in Europe

Playmobil go above and beyond with ESA's Luca Parmitano

STELLAR CHEMISTRY
SwRI, international team use deep learning to create virtual 'super instrument'

How do the strongest magnets in the universe form?

When debris overwhelms space exploitation

A filament fit for space - silk is proven to thrive in outer space temperatures

STELLAR CHEMISTRY
Scientists observe formation of individual viruses, a first

Liquifying a rocky exoplanet

Were hot, humid summers the key to life's origins?

A planet that should not exist

STELLAR CHEMISTRY
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.