. 24/7 Space News .
ENERGY TECH
Tweaking thermoelectric voltage across atomic-scale gold junction by mechanical force
by Staff Writers
Tokyo, Japan (SPX) Aug 28, 2017


Control of thermoelectric voltage (VT) and conductance (G) with the periodic variation of elongation of the contact (D). The elongations in (a) and (b) were 0.73 nm and 0.10 nm with temperature differences of 10 K and 4.4 K, respectively.

A voltage difference is created across a junction of two wires held at different temperatures. This phenomenon, called thermoelectric effect, has been widely studied and used in various applications such as thermoelectric power generators, thermoelectric refrigerators, and temperature measurement. When the cross section of the junction contact is reduced to a few atoms, quantum-mechanical effects or, specifically, quantum interferences among electrons affect the transport of electrons across the junction.

These interferences are strongly dependent on the structure, including minute defects, of the atomic-scale contact and surrounding material, which determine electrical properties such as conductance and thermoelectric voltage. So far, quantum interference effect in atomic-scale metal contacts has not found much application, because of the difficulty in precisely controlling atomic structures.

Akira Aiba, Manabu Kiguchi and their colleagues at Tokyo Tech experimentally demonstrated that the magnitude and sign of the thermoelectric voltage across atomic-scale gold junctions can be controlled by applying a mechanical strain to deform the contact minutely and accurately while the structure of the surrounding material remains unaffected.

Minute deformations were performed through bending of the junction's substrate by using a piezoelectric transducer and by maintaining a low-temperature environment so that the atoms do not gain sufficient kinetic energy to vibrate strongly and cause random deformations of the structure.

As the contact was elongated, the conductance decreased in a step-wise manner, and the thermoelectric voltage varied sharply with changes in sign. Remarkably, these changes were perfectly reversible: the electrical properties were restored to their initial values when the contact was compressed back to its initial structure.

A suitable range of elongation that causes a step-like change in conductance with a change in sign of the thermoelectric voltage was used to create a voltage switch, i.e., a device that switches voltage when elongated or compressed. Such a change of sign of thermoelectric voltage across atom-scale metal junctions was observed previously, but this is the first time that the sign change could be controlled predictably and reversibly. Interestingly, the voltage switch developed by these scientists was shown to work reliably over at least 20 cycles of elongation and compression.

Further, the scientists theoretically proved that the switching is caused by the change of quantum-interference states of electrons due to the mechanical modification of the structure of the contact. A theoretical model of the junction that the scientists constructed using density functional theory accurately predicted the changes of electrical properties with varying deformation.

This is the first report of successful manipulation of quantum interference of electrons in metal nanostructures through external mechanical force. The results of this study can have potential applications in thermopower generation, measurement techniques in materials science, and solid-state electronic devices.

Research paper

ENERGY TECH
Physicists find strange state of matter in superconducting crystal
Dresden, Germany (SPX) Aug 28, 2017
New research published this week shows a rare state of matter in which electrons in a superconducting crystal organize collectively. The findings lay the groundwork for answering one of the most compelling questions in physics: How do correlated electron systems work, and are they related to one another? The paper, Electronic in-plane symmetry breaking at field-tuned quantum criticality in ... read more

Related Links
Tokyo Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
ISS Orbit Increases Almost 2,000 Feet After Adjustment Maneuver - Control Center

Forty years on, Voyager still hurtles through space

NASA should continue large strategic missions to maintain leadership in space

NASA Offers Space Station as Catalyst for Discovery in Washington

ENERGY TECH
Indian Space Agency, Israeli counterpart to formalize strategic collaborations

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Falcon 9 launches from Vandenberg

SpaceX launches Taiwan's first home-built satellite

ENERGY TECH
Big dishes band together

NASA's Next Mars Mission to Investigate Interior of Red Planet

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

ENERGY TECH
ESA and Chinese astronauts train together

To boldly go where no startup has gone before

China's satellite sends unbreakable cipher from space

Xian Satellite Control Center resolves over 10 major satellite faults in 50 years

ENERGY TECH
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Bids for government funding prove strong interest in LaunchUK

Blue Sky Network Reaffirms Commitment to Brazilian Market

ENERGY TECH
NASA Awards $400,000 to Top Teams at Second Phase of 3D-Printing Competition

Full Circle: NASA to Demonstrate Refabricator to Recycle, Reuse, Repeat

Lockheed receives contract for Marine Corps AN/TPS-59A(V)3 radars

45th Space Wing supports successful Minotaur IV ORS-5 launch

ENERGY TECH
A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

Scientists take first snapshots of a molecular propeller that runs at 100 degrees Celsius

ENERGY TECH
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.