. 24/7 Space News .
PHYSICS NEWS
Transportable optical clock used to measure gravitation for the first time
by Staff Writers
Berlin, Germany (SPX) Feb 13, 2018

Inside view of the trailer with PTB's transportable optical atomic clock.

A European collaboration involving clock experts from the National Physical Laboratory (NPL), the Physikalisch-Technische Bundesanstalt (PTB) and the Istituto Nazionale di Ricerca Metrologica (INRIM) has used one of the world's transportable optical atomic clocks to measure gravitation for the first time. The results of the experiment were published in Nature Physics.

Until now, such delicate clocks have been restricted to laboratories at a few major research institutions, however, researchers at PTB have developed a transportable strontium optical lattice clock, opening up the possibility of performing measurements in the field.

The transportable clock was driven in a vibration-damped and temperature-stabilised trailer to the French Modane Underground Laboratory (LSM). Operated by Centre National de la Recherche Scientifique and Grenoble-Alpes University, the multidisciplinary lab is located in the middle of the Frejus road tunnel between France and Italy.

There, the team measured the gravity potential difference between the exact location of the clock inside the mountain and a second clock at INRIM - located 90 km away in Torino, Italy, at a height difference of about 1,000 m.

The accurate comparison of the two clocks was made possible using a 150 km long optical fibre link, set up by INRIM, and a frequency comb from NPL, to connect the clock to the link. Researchers from Leibniz Universitat Hannover also determined the gravity potential difference using conventional geodetic techniques, and the two measurements were shown to be consistent.

With improvements to the accuracy of the transportable optical clock, this technique has the potential to resolve height differences as small as 1 cm across the Earth's surface. The advantage of using optical clocks is that they can make measurements at specific points, in contrast to satellite-based measurements, such as GRACE and GOCE, which average the gravity potential over length scales of about 100 km.

This novel method could lead to higher resolution measurements of the Earth's gravity potential, allowing scientists to monitor, with unprecedented accuracy, continental height changes related to sea levels and the dynamics of ocean currents. It will also lead to more consistent national height systems.

Currently, different countries measure the Earth's surface in the same way, but relative to different reference levels. This has led to problems - one such being the Hochrhein Bridge between Germany and Switzerland, where construction on each side used different sea level calculations, leading to a 54 cm discrepancy between the two sides.

Achieving consistency between national height systems will help to prevent costly mistakes from happening in engineering and construction projects. Improved measurements of gravity potential may also help to improve our understanding of geodynamic effects associated with mass changes under the Earth's surface.

This type of measurement of height will also help us to monitor changing sea levels in real-time, allowing us to track seasonal and long-term trends in ice sheet masses and overall ocean mass changes. Such data provides critical input into models used to study and forecast the effects of climate change.

Helen Margolis, Fellow in Optical Frequency Standards and Metrology at NPL, said:"Our proof-of-principle experiment demonstrates that optical clocks could provide a way to eliminate discrepancies and harmonise measurements made across national borders." "One day such technology could help to monitor sea level changes resulting from climate change."

Christian Lisdat, Leader of the group 'Optical Lattice Clocks' at PTB, said: "Optical clocks are deemed to be the next generation atomic clocks - operating not only in laboratories but also as mobile precision instruments." "This cooperation proves again how disciplines such as physics or metrology, geodesy and climate impact research can mutually benefit each other."

Davide Calonico, Leader of the group 'Optical Lattice Clocks and Fibre links' at INRIM, said: "We demonstrated that optical clocks are valuable quantum sensors, and their quantum technology is beneficial outside primary metrology, in geodesy." "Together, optical clocks and optical fiber links offer the possibility to access new and fascinating scientific investigation"

Heiner Denker, Principal Investigator for Relativistic Geodesy and Gravimetry within geo-Q, at Leibniz Universitat Hannover, said: "The newly developed optical clocks have the potential to revolutionise geodetic height determination, as they can overcome some of the limitations of classical geodetic techniques."

"Optical clocks could help to establish a unified world height reference system with significant impact on geodynamic and climate research."

'Geodesy and metrology with a transportable optical clock' Grotti et al., Nature Physics, DOI:


Related Links
Physikalisch-Technische Bundesanstalt
The Physics of Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


PHYSICS NEWS
Acoustic tractor beam could pave the way for levitating humans
Bristol UK (SPX) Feb 05, 2018
Acoustic tractor beams use the power of sound to hold particles in mid-air, and unlike magnetic levitation, they can grab most solids or liquids. For the first time University of Bristol engineers have shown it is possible to stably trap objects larger than the wavelength of sound in an acoustic tractor beam. This discovery opens the door to the manipulation of drug capsules or micro-surgical implements within the body. Container-less transportation of delicate larger samples is now also a possibility a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Holograms and mermaids: Top trends at Nuremberg toy fair

NanoRacks adds Thales Alenia Space to team up on Commercial Space Station Airlock Module

Russia to start offering spacewalks for tourists

Cosmonauts position antennae wrong during record-long spacewalk

PHYSICS NEWS
Soyuz launch to resupply ISS aborted seconds before liftoff

What's next for SpaceX?

Elon Musk, visionary Tesla and SpaceX founder

Japan Successfully Launches World's Smallest Carrier Rocket

PHYSICS NEWS
HKU scientist makes key discoveries in the search for life on Mars

Studies of Clay Formation Provide Clues to Early Martian Climate

Opportunity Celebrates 14 Years of Working on Mars

Mount Sharp 'Photobombs' Mars Curiosity Rover

PHYSICS NEWS
Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

PHYSICS NEWS
Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

UK companies seek cooperation with Russia in space technologies

GovSat-1 Successfully Launched on SpaceX Falcon 9 Rocket

PHYSICS NEWS
A Detailed Timeline of The IMAGE Mission Recovery

Lockheed's 'Dragon Shield' for Finland achieves operational capability

Scientists can now 3D print nanoscale metal structures

Helping authorities respond more quickly to airborne radiological threats

PHYSICS NEWS
Viruses are falling from the sky

Are you rocky or are you gassy

What the TRAPPIST-1 Planets Could Look Like

Hubble offers first atmospheric data of exoplanets orbiting Trappist-1

PHYSICS NEWS
Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.