Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Toxic algal blooms behind Klamath River dams create health risks far downstream
by Staff Writers
Corvallis OR (SPX) Jun 22, 2015


This algal bloom on the Copco Reservoir on the Klamath River can be transported downstream and cause health risks to people and wildlife. Image courtesy of Oregon State University. For a larger version of this image please go here.

A new study has found that toxic algal blooms in reservoirs on the Klamath River can travel more than 180 miles downriver in a few days, survive passage through hydroelectric turbines and create unsafe water conditions on lower parts of the river in northern California.

Water-borne algal blooms can accumulate to concentrations that can pose health risks to people, pets and wildlife, and improved monitoring and public health outreach is needed to address this issue, researchers said.

The frequency, duration and magnitude of harmful algal blooms appear to be increasing.

The findings were made by researchers from Oregon State University, based on data from an extensive survey of the Klamath River in 2012, and just published in Harmful Algae, a professional journal.

The toxins may be a special concern if they are bioaccumulated in some animal species, such as freshwater mussels in which the level of the toxin can be more than 100 times higher than ambient concentrations.

"It's clear that these harmful algal blooms can travel long distances on the river, delivering toxins to areas that are presently underappreciated, such as coastal margins," said Timothy Otten, an OSU postdoctoral scholar in the OSU College of Science and College of Agricultural Sciences.

"And the blooms are dynamic, since they can move up and down in the water column and are physically distributed throughout the reservoir," he said. "This means you can't just measure water in one place and at one time and adequately estimate the public health risk."

Microcystis is a seasonal blue-green cyanobacterium found around the world, preferring warm waters in lakes and reservoirs. Some strains are toxic, others are not. Its magnitude and persistence may increase with global climate change, researchers say, and it can cause a range of health issues, including liver damage, rashes, gastrointestinal illness, and other concerns. The toxin is not destroyed by boiling, making it unique from many other biological drinking water contaminants.

Improved awareness of the ability of blooms to travel significant distances downstream, and communication based on that, would help better inform the public, the OSU scientists said. But individual knowledge and awareness would also help.

"On a lake or river, if you see a green band along the shore or green scum on the surface, the water may not be safe to recreate in," Otten said. "Because this problem is so diffuse, it's often not possible to put up posters or signs everywhere that there's a problem in real-time, so people need to learn what to watch for. Just as with poison ivy or oak, the general public needs to learn to recognize what these hazards look like, and know to avoid them in order to safeguard their own health."

In this and other recent research, the OSU scientists have also developed genetic tools that can help identify problems with Microcystis, more quickly and at lower cost than some older methods. But those tools have not yet been widely adopted by the monitoring community.

"Right now, some lakes are not sampled at all for algal blooms, so we don't really know if there's a problem or not," said Theo Dreher, the Pernot Professor and former chair of the Department of Microbiology in the OSU College of Science and College of Agricultural Sciences. "There's no doubt we could use improved monitoring in highly used lakes and reservoirs, or in rivers downstream of them when toxic blooms are found."

In this study, researchers found that intensive blooms of Microcystis in Iron Gate Reservoir on the Klamath River were the primary source of toxic algae observed downstream. They used genetic tracking technology to establish what many may have suspected when observing Microcystis in the lower reaches of the Klamath River. This transport of algae has been very little studied, even though it's likely common.

The possible removal of dams on the Klamath River after 2020 may ultimately help mitigate this problem, the researchers said. Their study found no evidence of endemic Microcystis populations in the flowing regions of the Klamath River, both upstream and downstream of the Copco and Iron Gate reservoirs.

The problem with these bacteria is national and global in scope, especially in summer.

There are more than 123,000 lakes greater than 10 acres in size across the United States, and based on an EPA National Lakes Assessment, at least one-third may contain toxin-producing cyanobacteria. Dams, rising temperatures and atmospheric carbon dioxide concentrations, extreme weather and increased runoff of nutrients from urban and agricultural lands are all compounding the problem.

Many large, eutrophic lakes such as Lake Erie are plagued each year by algal blooms so massive that they are visible from outer space. Dogs have died from drinking contaminated water, and sea otter deaths in Monterey Bay have been attributed to eating shellfish contaminated with toxin produced by Microsystis.

This study was supported by Pacificorp, the OSU Agricultural Experiment Station and the Mabel E. Pernot Trust.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oregon State University
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
China electricity giant starts building new hydropower stations
Beijing (XNA) Jun 18, 2015
Construction began on new hydropower plants with advanced electricity storage in central and east China on Friday, marking the country's latest effort to promote clean energy. State Grid Co., the world's largest electric utility company, began building the three power stations, which can store hydropower to be used during periods of high-demand, in Anhui, Shandong and Henan provinces. ... read more


WATER WORLD
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

WATER WORLD
NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

Red Planet Rising

WATER WORLD
Robotic Tunneler May Explore Icy Moons

How to sail through space on sunbeams - solar satellite leads the way

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

WATER WORLD
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

WATER WORLD
Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

'Hard landing' as three astronauts return to Earth from ISS

ISS Adjusts Orbit to Evade Space Junk

Space station back on track after mystery Soyuz glitch

WATER WORLD
Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

NASA issues RFP for New Class of Launch Services

WATER WORLD
Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

Work-experience schoolboy discovers a new planet

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

WATER WORLD
Mantis shrimp inspires new body armor and football helmet design

A new look at surface chemistry

Penn research simplifies recycling of rare-earth magnets

Penn researchers develop a new type of gecko-like gripper




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.