. 24/7 Space News .
TIME AND SPACE
The world's most powerful X-ray laser beam creates 'molecular black hole'
by Staff Writers
Menlo Park CA (SPX) Jun 01, 2017


In this illustration, an ultra-intense X-ray laser pulse from SLAC's Linac Coherent Light Source knocks so many electrons out of a molecule's iodine atom (right) that the iodine starts pulling in electrons from the rest of the molecule (lower left), like an electromagnetic version of a black hole. Many of the stolen electrons are also knocked out by the laser pulse; then the molecule explodes. (DESY/Science Communication Lab)

When scientists at the Department of Energy's SLAC National Accelerator Laboratory focused the full intensity of the world's most powerful X-ray laser on a small molecule, they got a surprise: A single laser pulse stripped all but a few electrons out of the molecule's biggest atom from the inside out, leaving a void that started pulling in electrons from the rest of the molecule, like a black hole gobbling a spiraling disk of matter.

Within 30 femtoseconds - millionths of a billionth of a second - the molecule lost more than 50 electrons, far more than scientists anticipated based on earlier experiments using less intense beams or isolated atoms. Then it blew up.

The results, published in Nature, give scientists fundamental insights they need to better plan and interpret experiments using the most intense and energetic X-ray pulses from SLAC's Linac Coherent Light Source (LCLS) X-ray free-electron laser. Experiments that require these ultrahigh intensities include attempts to image individual biological objects, such as viruses and bacteria, at high resolution. They are also used to study the behavior of matter under extreme conditions, and to better understand charge dynamics in complex molecules for advanced technological applications.

"For any type of experiment you do that focuses intense X-rays on a sample, you want to understand how it reacts to the X-rays," said Daniel Rolles of Kansas State University. "This paper shows that we can understand and model the radiation damage in small molecules, so now we can predict what damage we will get in other systems."

Like Focusing the Sun Onto a Thumbnail
The experiment, led by Rolles and Artem Rudenko of Kansas State, took place at LCLS's Coherent X-ray Imaging instrument. CXI delivers X-rays with the highest possible energies achievable at LCLS, known as hard X-rays, and records data from samples in the instant before the laser pulse destroys them.

How intense are those X-ray pulses?
"They are about a hundred times more intense than what you would get if you focused all the sunlight that hits the Earth's surface onto a thumbnail," said LCLS staff scientist and co-author Sebastien Boutet.

For this study, researchers used special mirrors to focus the X-ray beam into a spot just over 100 nanometers in diameter - about a hundredth the size of the one used in most CXI experiments, and a thousand times smaller than the width of a human hair. They looked at three types of samples: individual xenon atoms, which have 54 electrons each, and two types of molecules that each contain a single iodine atom, which has 53 electrons.

Heavy atoms around this size are important in biochemical reactions, and researchers sometimes add them to biological samples to enhance contrast for imaging and crystallography applications. But until now, no one had investigated how the ultra-intense CXI beam affects molecules with atoms this heavy.

X-rays Trigger Electron Cascades
The team tuned the energy of the CXI pulses so they would selectively strip the innermost electrons from the xenon or iodine atoms, creating "hollow atoms." Based on earlier studies with less energetic X-rays, they thought cascades of electrons from the outer parts of the atom would drop down to fill the vacancies, only to be kicked out themselves by subsequent X-rays. That would leave just a few of the most tightly bound electrons. And, in fact, that's what happened in both the freestanding xenon atoms and the iodine atoms in the molecules.

But in the molecules, the process didn't stop there. The iodine atom, which had a strong positive charge after losing most of its electrons, continued to suck in electrons from neighboring carbon and hydrogen atoms, and those electrons were also ejected, one by one.

Rather than losing 47 electrons, as would be the case for an isolated iodine atom, the iodine in the smaller molecule lost 54, including the ones it grabbed from its neighbors - a level of damage and disruption that's not only higher than would normally be expected, but significantly different in nature.

Results Feed Into Theory to Improve Experiments
"We think the effect was even more important in the larger molecule than in the smaller one, but we don't know how to quantify it yet," Rudenko said. "We estimate that more than 60 electrons were kicked out, but we don't actually know where it stopped because we could not detect all the fragments that flew off as the molecule fell apart to see how many electrons were missing. This is one of the open questions we need to study."

For the data analyzed to date, the theoretical model provided excellent agreement with the observed behavior, providing confidence that more complex systems can now be studied, said LCLS Director Mike Dunne.

"This has important benefits for scientists wishing to achieve the highest-resolution images of biological molecules to inform the development of better pharmaceuticals, for example," he said.

"These experiments will also guide the development of a next-generation instrument for the LCLS-II upgrade project which will provide a major leap in capability due to the increase in repetition rate from 120 pulses per second to 1 million."

TIME AND SPACE
Do stars fall quietly into black holes, or crash into something utterly unknown?
Austin TX (SPX) May 31, 2017
Astronomers at The University of Texas at Austin and Harvard University have put a basic principle of black holes to the test, showing that matter completely vanishes when pulled in. Their results constitute another successful test for Albert Einstein's General Theory of Relativity. Most scientists agree that black holes, cosmic entities of such great gravity that nothing can escape their ... read more

Related Links
SLAC National Accelerator Laboratory
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Astronauts return after marathon ISS mission

From 2D to 3D, Space Station Microscope Gets an Upgrade

Studying Flame Behavior in Microgravity with a Solid "High-Five"

NASA honors Kennedy's space vision on 100th birthday

TIME AND SPACE
SpaceX blasts off cargo using recycled spaceship

Ariane 5 launches its heaviest telecom payload

Eutelsat signs new launch contract with Arianespace

Ariane 5 launches its first all-electric satellite

TIME AND SPACE
Halos discovered on Mars widen time frame for potential life

Curiosity Peels Back Layers on Ancient Martian Lake

Student-Made Mars Rover Concepts Lift Off

Illinois Company Among Hundreds Supporting NASA Mission to Mars

TIME AND SPACE
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

TIME AND SPACE
Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

TIME AND SPACE
When gold turns invisible

Mitsubishi Electric Completes New Satellite Component Production Facility

High pressure key to lighter, stronger metal alloys, Stanford scientists find

Northrop Grumman receives AESA radar contract

TIME AND SPACE
Giant Ringed Planet Likely Cause of Mysterious Eclipses

New Collaboration with Jodrell Bank Observatory for SETI

Viable Spores, DNA Fragments Discovery at ISS Justifies Biosphere's Expansion

Russia thinks microorganisms may be living outside the space station

TIME AND SPACE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.