. 24/7 Space News .
EARTH OBSERVATION
The future of radar - scientific benefits and potential of TerraSAR-X and TanDEM-X
by Staff Writers
Bonn, Germany (SPX) Oct 19, 2016


Glacier network, Greenland. For a larger version of this image please go here.

The German satellite duo TerraSAR-X and TanDEM-X have consistently delivered one-of-a-kind Earth observation data since 2007 and 2010, hence shaping the international research landscape. Now, scientific users from across the globe have gathered for the TerraSAR-X and TanDEM-X Science Meeting at the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) in Oberpfaffenhofen, where they will discuss the results obtained from the data and define requirements for future remote sensing technology.

Approximately 200 presentations between 17 and 20 October 2016 will describe state-of-the-art research, including insight from the areas of glaciology, hydrology, permafrost, sea ice, landslides, agriculture, forestry, volcanology, coastal and ocean research, geo-risks, and the methods applied to produce digital terrain models.

Reporting live from the conference, the TanDEM-X Blog will present DLR talks from the Science Meeting and will outline how researchers around the world use data from the two radar satellites.

Research applications
Radar sensors are particularly important in the field of Earth observation, as they can deliver images irrespective of cloud cover and at any time of the day or night. From space, they are able to capture expansive areas of more than 100 kilometres in length.

Moreover, the civilian radar satellites TerraSAR-X and TanDEM-X have measured the Earth with unprecedented accuracy over the course of their missions, contributing significantly to the scientific exploitation of the data. The satellites are still in operation and may indeed continue to be in the service of science for many years.

"International research facilities and organisations have been using the data acquired thus far to analyse, among other things, natural hazards such as earthquakes, volcanic eruptions and tsunamis. The strategies and measures developed on the basis of the data will become increasingly effective for the prevention or management of crises situations as the influential factors and correlations are known," explains Achim Roth from the DLR Earth Observation Center.

Users in the area of environmental protection have shown, among other things, that they can utilise the radar satellites to observe systematic deforestation or illegal felling of woodland areas.

This applies in particular to rainforests, as their sheer magnitude and the prevailing weather conditions mean they can only be satisfactorily monitored using radar sensors. Forested areas are among the key fields of scientific concern, as their vast reservoirs of biomass directly influence the greenhouse gas effect: a substantial quantity of carbon dioxide is extracted from the woodlands during removal or decomposition of vegetation.

Large-scale slash-and-burn practices are particularly critical, as the carbon dioxide stored in the forests is released directly, producing a correspondingly high concentration of the greenhouse gas carbon dioxide in the atmosphere. In contrast, planned deforestation - for instance as a source of timber - releases the natural carbon reservoirs contained in the woodland areas over a longer period and with a significant delay.

Impact on future research
The view from space can provide precise information on the changes taking place in glaciers and ice shelves. The sometimes dramatic developments require regular monitoring and must be viewed in context with global warming. Here, the TanDEM-X elevation model is a true treasure trove of data; never before have Greenland and the Antarctic been surveyed so comprehensively and in such immense detail. Until now, the ice masses have been, from a scientific perspective, 'expanses of white' on a map of the world.

The polar regions present immense difficulties for radar imaging. Smooth, snow-bound surfaces do not contain any striking points of reference that would permit the superposition of several images.

Moreover, an extremely precise allocation of the pixels would lead to image noise. "Our highly accurate data processing technologies here on the ground, combined with meticulous calibration of the radar instrument, allow us to observe glacier movements in the centimetre range, or to measure changes in elevation caused by ice melting in the metre range," says Irena Hajnsek from the DLR Microwaves and Radar Institute.

The global TanDEM-X elevation model has now given climate researchers and geoscientists entirely new perspectives and opportunities for research. The insight they will acquire, and how this will influence the international research community, will be key issues at this Science Meeting as well as at future gatherings. Looking ahead: HRWS and Tandem-L

Successful operation of the satellites in formation flight and the outstanding quality of data yielded by the TerraSAR-X and TanDEM-X missions represent a new milestone in the history of Earth observation. Seeking to expand the German radar satellite programme, DLR has set its sights on a successor programme, HRWS (High Resolution Wide Swath), to ensure continuity in Earth observation within the proven X-band frequency range. HRWS is scheduled for launch in 2022, and DLR is also involved in intense work on a revolutionary Earth observation system with the Tandem-L mission proposal.

Tandem-L, the highly innovative radar mission, aims to acquire important environmental and meteorological data on a global scale and in high temporal resolution. In the proposed mission, two radar satellites will map the Earth's landmass in three dimensions every eight days. This would enable timely and systematic mapping of dynamic processes as they unfold across the globe.

Earthquake researchers and risk analysts would be able to detect deformations in the Earth's surface in an accurate millimetre range. Glacier movements and melting processes across the polar regions would be measurable on a more regular and therefore precise basis. The plan proposes that the Earth observation data acquired by the three radar systems should be complementary.

Tandem-L will operate in a longer wavelength compared with the two current missions. An approximately 24-centimetre wavelength permits penetration through the vegetation, hence revealing surface structures in the subsoil. New technologies and imaging methods such as polarimetric SAR interferometry also enable three-dimensional mapping of forests. This could be used to calculate forest elevation and hence to produce an indirect estimate of biomass, a factor that is currently beyond the reach of science on a global scale.

Researchers from various Helmholtz Centres involved in preliminary mission studies will now present their findings in Oberpfaffenhofen, explaining the pivotal role of Tandem-L in providing answers to challenges faced by our environment. The Science Meeting offers the roughly 300 international participants a platform to identify all necessary issues of upcoming research and to launch the future of Earth observation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DLR TerraSAR-X special
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARTH OBSERVATION
FSU geologist explores minerals below Earth's surface
Tallahassee FL (SPX) Oct 17, 2016
A Florida State University geology researcher is going deep below the Earth's surface to understand how some of the most abundant minerals that comprise the Earth's crust change under pressure. In a paper published in Scientific Reports, Assistant Professor of Geology Mainak Mookherjee explores how feldspar, one of the most important minerals in the Earth's crust, changes under pressure. T ... read more


EARTH OBSERVATION
Hunter's Supermoon to light up Saturday night sky

Small Impacts Are Reworking Lunar Soil Faster Than Scientists Thought

A facelift for the Moon every 81,000 years

Exploration Team Shoots for the Moon with Water-Propelled Satellite

EARTH OBSERVATION
Robot explorers headed for Mars quest: ESA

Ready for the Red Planet

ESA lander starts 3-day descent to Mars; Telemetry all good

Europe heads for Mars in search of life

EARTH OBSERVATION
Beaches, skiing and tai chi: Club Med, Chinese style

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Growing Interest: Students Plant Seeds to Help NASA Farm in Space

EARTH OBSERVATION
China closer to establishing permanent space station

Ambitious space satellite projects set for liftoff

China's permanent station plans ride on mission

China to enhance space capabilities with launch of Shenzhou-11

EARTH OBSERVATION
Hurricane Nicole delays next US cargo mission to space

Automating sample testing thanks to space

Orbital CRS-5 launching hot and bright science to space

Roscosmos Sets New Date for Soyuz MS-02 Launch to Orbital Station

EARTH OBSERVATION
US-Russia Standoff Leaves NASA Without Manned Launch Capabilities

Ariane 5 ready for first Galileo payload

ILS Announces Two Missions under Its EUTELSAT Multi-Launch Agreement

More commercial spaceports going ahead

EARTH OBSERVATION
Proxima Centauri might be more sunlike than we thought

Stars with Three Planet-Forming Discs of Gas

TESS will provide exoplanet targets for years to come

The death of a planet nursery?

EARTH OBSERVATION
U.S. State Dept. approves $194 million radar sale to Kuwait

Pushing the boundaries of magnet design

Polymer breakthrough to improve things we use everyday

Efficiency plus versatility









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.