24/7 Space News  





. The Poincare Dodecahedral Space Model Gains Support To Explain The Shape Of Space

View from inside Poincare dodecahedral space perpendicularly to one pentagonal face. The observer has the illusion to live in a space 120 times vaster, made of tiled dodecahedra which duplicate like in a mirror hall.
by Staff Writers
Paris, France (SPX) Feb 13, 2008
The last fifteen years have shown considerable growth in attempt to determine the global shape of the universe, i.e. not only the curvature of space but also its topology. The concordance cosmological model which now prevails describes the universe as a flat (zero-curvature) infinite space in eternal, accelerated expansion.

However, the data delivered between 2003 and 2006 by the NASA satellite WMAP, which produced a full-sky, high resolution map of the Cosmic Microwave Background Radiation (CMB), yield a very poor fit to the concordance model at large angular scales. They rather tend to favor a finite, positively curved space, and provide hints about a multiply-connected topology.

The CMB is the relics of the radiation emitted soon after the Big Bang. It is observed on the so-called last scattering surface (LSS), a sphere of radius about 50 billion light-years around us. The tiny temperature fluctuations observed on the LSS may be decomposed into a sum of spherical harmonics, much like the sound produced by a music instrument may be decomposed into ordinary harmonics.

The relative amplitudes of each spherical harmonics determine the power spectrum, which is a signature of the geometry of space and of the physical conditions which prevailed at the time of CMB emission.

Now, cosmic topology predicts that a space which is smaller than the LSS cannot contain vibrational modes larger than the space itself. This should lead to a cutoff of power in statistics representing these fluctuations, above which power should drop to zero. The predicted cutoff in large scale power has precisely been observed by the 2003-2006 WMAP all-sky survey.

Motivated by indications that the Universe may have positive curvature, and calculating large-angle vibrational harmonics to simulate the power spectrum, some authors of the present study had already argued in October 2003 that the multiply-connected Poincare dodecahedral space (PDS) topology was favoured by the WMAP data relative to an infinite, simply connected flat space.

The PDS model has since been studied in more mathematical details by several teams all around the world. In the most recent study, Luminet and co-workers calculated 1,7 billion vibrational modes of PDS to simulate more accurately the power spectrum, from large to small angular scales.

They found that the maximal repression of the quadrupole signal, as found in the data, requires an optimal total density of Otot = 1.018. Their predicted PDS power spectrum then remarkably agrees with the observed one.

Circle signature
If physical space is smaller than the observed space inside the LSS sphere, there must be particular correlations in the CMB, namely pairs of matched circles along which temperature fluctuations should be the same, as they would represent the same physical points but observed from different directions due to topological lensing.

As a definite signature of the underlying topology, the PDS model predicts six pairs of antipodal matched circles with a relative phase of 36degrees. To test this prediction, the team has simulated CMB temperature fluctuations maps in the PDS topology and checked the presence of the expected circles-in-the-sky.

Now the crucial question is : are these pairs of matched circles present in the real WMAP data ? Three different teams (from USA, Germany and Poland) have addressed the problem in the recent years, using various statistical indicators and massive computer calculations.

No clear answer presently emerges, because the expected positive correlation signal from matched pairs is spoiled by various cosmological effects, astrophysical foregrounds and instrumental effects that constitute noise.

Thus, another international team of cosmologists lead by B. Roukema of Torun University in Poland (formerly at Paris-Meudon Observatory), has reanalyzed the WMAP data with new statistical tools. They have shown that cross-correlations of temperature fluctuations on multiple copies of the LSS imply a highly cross-correlated PDS symmetry with the correct phase of 36degrees for the matched circles.

By determining the position of such circles, they were even able to fix the space orientation of the fundamental dodecahedron relative to the CMB frame.

Conclusion
Do we really live in a Poincare Dodecahedral Space? Further constraints either for or against the model are certainly still needed, but the evidence in favour of a PDS-like signal in the WMAP data does seem to be cumulating. To clarify the issue, new data from the future European satellite Planck Surveyor (launch scheduled in july 2008) are eagerly expected.

Community
Email This Article
Comment On This Article

Related Links
Understanding Time and Space




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


hello world
Cluster Result Impacts Future Missions
Paris, France (ESA) Jan 29, 2008
Magnetic reconnection is a universal process able to drive explosive phenomena such as solar flares. At the heart of this process is a small zone called the electron diffusion region, where reconnection is thought to be triggered.

.
Get Our Free Newsletters Via Email
  



  • Canadian Astronauts Julie Payette And Robert Thirsk To Go On Space Missions In 2009
  • Doctors Give Green Light For Flight Of Next Space Tourist
  • Coalition for Space Exploration Responds To White House NASA Budget Request
  • Boeing Courts Ares I Suppliers To Provide NASA With Best Value

  • Still Grinding After All These Years Makes For Much Opportunity
  • NASA Budget Request Strong On Earth Weak On Mars
  • ESA Presents Mars In 3D
  • Mars In Their Sights

  • ILS Proton Launches THOR 5 Satellite
  • Bigelow Aerospace And Lockheed Martin Converging On Terms For Launch Services
  • USAF Awards United Launch Alliance Three Delta IV Missions
  • Vandenberg Prepares For First Atlas V Launch

  • Indonesia To Develop New EO Satellite
  • Russia To Launch Space Project To Monitor The Arctic In 2010
  • New Radar Satellite Technique Sheds Light On Ocean Current Dynamics
  • SPACEHAB Subsidiary Wins NASA Orbiting Carbon Observatory Contract

  • ASU Research Solves Solar System Quandary
  • Happy Second Birthday New Horizons
  • The PI's Perspective: Autumn 2007: Onward to the Kuiper Belt
  • Data For The Next Generations

  • Astronomers Eye Ultra-Young, Bright Galaxy In Early Universe
  • Spitzer Catches Young Stars In Their Baby Blanket Of Dust
  • Light Echoes Whisper The Distance To A Star
  • Racing Ahead At The Speed Of Light

  • NASA Recruiting Volunteers For Out Of This World Jobs
  • Volcanic deposits may aid lunar outposts
  • NG-Built Antennas Helping Provide Data On Moon's Thermal History For Japan's KAGUYA (SELENE) Mission
  • Amateur Radio Operators Asked To Tune Into Lunar Radar Bounce

  • Wireless Connectivity For Entertainment-Rich Smartphones
  • Trimble Offers Free Geocaching Application For GPS-Enabled Nokia Mobile Phones
  • RFMD Introduces Location Solutions Designed To Enable Location-Based Services In Mobile Devices
  • Qualcomm Launches New Family Of Chips For Mobile Consumer Devices

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement