. 24/7 Space News .
The First 3-D Map Of The Universe

This three-dimensional map, obtained thanks to HST and XMM-Newton data, offers a first look at the web-like large-scale distribution of dark matter, an invisible form of matter that accounts for most of the Universe's mass. The map reveals a loose network of dark matter filaments, gradually collapsing under the relentless pull of gravity, and growing clumpier over time. The three axes of the box correspond to sky position (in right ascension and declination), and distance from the Earth increasing from left to right (as measured by cosmological redshift). Note how the clumping of the dark matter becomes more pronounced, moving right to left across the volume map, from the early Universe to the more recent Universe. Credits: NASA, ESA and R. Massey (California Institute of Technology) - See more images and captions at ESA
by Staff Writers
Pasadena CA (SPX) Mar 06, 2007
By analyzing the COSMOS field, the largest field of galaxies ever observed with the Hubble space telescope, an international team of scientists led by researchers from the California Institute of Technology (United States) and researchers from the associated laboratories of the CNRS and the CEA, made the first three-dimensional map of dark matter in the Universe using gravitational lensing effects.

This historic first seems to confirm the standard theories on the formation of the large structures of the Universe. This study was presented in the January 7, 2007 issue of the journal "Nature."

For astronomers, mapping the distribution of the mass in the Universe from its light component is a considerable challenge. It is an exercise as complicated as determining the extent of a city solely from aerial photographs taken at night.

Luminous matter (stars, galaxies, ionized gas) represents only about one sixth of the total matter of the Universe. The remainder is invisible and composed in particular of the mysterious component called dark matter.

Nonetheless, despite the complexity of the task, a three-dimensional map of all of the mass, luminous and dark matter was made for the first time in the COSMOS field. An international team of astronomers achieved this feat by using the gravitational lens effect to measure the large-scale distribution of matter.

This new map brings more information comparable to what we would have by seeing a city in daylight rather than at night to be able to distinguish all of the fine details.

The map of dark matter was made by measuring the shapes of half a million distant galaxies. To reach us, their light had to cross the "fields" of dark matter and the beams of light were slightly deflected.

This phenomenon is a direct consequence of Albert Einstein's theory of general relativity which predicts that the presence of a large mass locally distorts Space-Time.

In consequence, the trajectory of particles passing close to this concentration of mass is diverted. Photons, particles associated with electromagnetic radiation, are not an exception. The deformation observed in the shapes of the galaxies was used to reconstruct the distribution of the mass along the line of sight.

The COSMOS field covers a region of the sky nine times the size of the Moon (1.6 square degrees). The COSMOS survey done by Hubble includes 575 images from the ACS camera (Advanced Camera for Surveys), corresponding to close to 1,000 hours of observation.

Following the observations made with Hubble, many additional observations with telescopes (like the Subaru, the VLT and the CFHT) and in space (XMM-Newton) on the ground were carried out.

In particular, the multi-color images from the Subaru and the Canada-France-Hawaii Telescopes, as well as the thousands of VLT spectra measured with the VIMOS instrument allowed for estimation of the distance of the various structures, thereby enabling this 3 dimensional map to be made.

It shows that luminous matter concentrates along the densest regions of the dark matter and a network of filaments that intersect where clusters of galaxies are located. Furthermore, the map covers close to half of the age of the Universe and makes it possible to monitor the evolution of the distribution of dark matter, as it becomes more and more structured over time.

"Mapping the distribution of dark matter in space and time is fundamental for understanding how the galaxies developed and grouped themselves over time. The results obtained through the COSMOS survey seem to be in accordance with the standard theories of the formation of the large-scale structures of the Universe," says Jean Paul Kneib, CNRS researcher at the Marseilles Laboratory of Astrophysics.

The COSMOS survey thus brings us a three-dimensional map of the dark matter in the Universe and will allow us for the first time to monitor the relationship between the distribution of dark matter and the formation and evolution of galaxies.

This type of mapping of the Universe by the weak gravitational lens effect is already orienting future space missions that are now already underway...

We can thus imagine that in the decades to come the whole Universe could be mapped, in an even more detailed manner, perhaps making it possible to shed light on the existence and the nature of dark energy, the elusive force which is thought to be accelerating the expansion of the Universe.

Email This Article

Related Links
More images at ESA
CEA
CalTech
Stellar Chemistry, The Universe And All Within It
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Atomic Clock Signals May Be Best Shared By Fiber-Optics
Boulder CO (SPX) Mar 06, 2007
Time and frequency information can be transferred between laboratories or to other users in several ways, often using the Global Positioning System (GPS). But today's best atomic clocks are so accurate-neither gaining nor losing one second in as long as 400 million years-that more stable methods are needed.







  • Astrophysicist Hawking To Try Out Weightlessness
  • Impossible For Great Wall To Be Visible With Naked Eye From From Space
  • Japanese Instant Noodle Pioneer In Final Blastoff
  • US Space Agency Looks To The Moon And Beyond

  • Rosetta Delivers Phobos Transit Animation And Sees Mars In Stereo
  • SpaceDev's Starsys Division Awarded Contract For NASA Mars Science Explorer Mission
  • First Test Of New Autonomous Capability On Mars Is Promising
  • Where Is Beagle 2

  • Russia May Open New Space Launch Site
  • Hyundai To Build First South Korea Launch Pad
  • Construction Of Soyuz Launch Base In French Guiana Begins
  • Iran Claims Of Satellite Launch Brought Down To Earth

  • CSIRO Imagery Shows Outer Great Barrier Reef At Risk From River Plumes
  • Scientists Gear Up For Envisat 2007 Symposium
  • ITT Passes Critical Design Review for GOES-R Advanced Baseline Imager
  • Sandstorm Over The Mediterranean

  • The Tip of the Iceberg
  • New Horizons Completes First Stage Of Long Journey To Pluto And Beyond
  • Pluto-Bound New Horizons Spacecraft Gets A Boost From Jupiter
  • Defining Planets

  • New Observations Show Sun-Like Star In Earliest Stage Of Development
  • First X-Ray Detection Of A Colliding-Wind Binary Beyond Milky Way
  • Spitzer First to Crack Open Light of Faraway Worlds
  • Peering Into The Pillars Of Creation

  • Germany Preparing For Moon Mission
  • Lunar Crater Observation and Sensing Satellite Passes Critical Design Review
  • Camping On The Moon Will Be One Far Out Experience
  • Out-Of-This-World Ride In NASA's 14th Annual Great Moonbuggy Race

  • Europe Moves To Safeguard Galileo Frequencies
  • GIOVE-A Navigation Signal Available To Users
  • The Murky Ethics Of Implanted RFID Chips
  • Malaysia Launches World's Smallest Microchip With Radio Chip

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement