. 24/7 Space News .
TECH SPACE
Terahertz laser for sensing and imaging outperforms its predecessors
by Staff Writers
Boston MA (SPX) Dec 13, 2018

A tiny terahertz laser designed by MIT researchers is the first to reach three key performance goals at once: high power, tight beam, and broad frequency tuning.

A terahertz laser designed by MIT researchers is the first to reach three key performance goals at once - high constant power, tight beam pattern, and broad electric frequency tuning - and could thus be valuable for a wide range of applications in chemical sensing and imaging.

The optimized laser can be used to detect interstellar elements in an upcoming NASA mission that aims to learn more about our galaxy's origins. Here on Earth, the high-power photonic wire laser could also be used for improved skin and breast cancer imaging, detecting drugs and explosives, and much more.

The laser's novel design pairs multiple semiconductor-based, efficient wire lasers and forces them to "phase lock," or sync oscillations. Combining the output of the pairs along the array produces a single, high-power beam with minimal beam divergence. Adjustments to the individual coupled lasers allow for broad frequency tuning to improve resolution and fidelity in the measurements. Achieving all three performance metrics means less noise and higher resolution, for more reliable and cost-effective chemical detection and medical imaging, the researchers say.

"People have done frequency tuning in lasers, or made a laser with high beam quality, or with high continuous wave power. But each design lacks in the other two factors," says Ali Khalatpour, a graduate student in electrical engineering and computer science and first author on a paper describing the laser, published in Nature Photonics. "This is the first time we've achieved all three metrics at the same time in chip-based terahertz lasers."

"It's like 'one ring to rule them all,'" Khalatpour adds, referring to the popular phrase from "The Lord of the Rings."

Joining Khalatpour on the paper are: Qing Hu, a distinguished professor of electrical engineering and computer science at MIT who has done pioneering work on terahertz quantum cascade lasers; and John L. Reno of the Sandia National Laboratories.

Selected by NASA
Last year, NASA announced the Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory (GUSTO), a 2021 mission to send a high-altitude balloon-based telescope carrying photonic wire lasers for detecting oxygen, carbon, and nitrogen emissions from the "interstellar medium," the cosmic material between stars. Extensive data gathered over a few months will provide insight into star birth and evolution, and help map more of the Milky Way and nearby Large Magellanic Cloud galaxies.

For a component of the GUSTO chemical detector, NASA selected a novel semiconductor-based terahertz laser previously designed by the MIT researchers. It is currently the best-performing terahertz laser. Such lasers are uniquely suited for spectroscopic measurement of oxygen concentrations in terahertz radiation, the band of the electromagnetic spectrum between microwaves and visible light.

Terahertz lasers can send coherent radiation into a material to extract the material's spectral "fingerprint." Different materials absorb terahertz radiation to different degrees, meaning each has a unique fingerprint that appears as a spectral line. This is especially valuable in the 1-5 terahertz range: For contraband detection, for example, heroin's signature is seen around 1.42 and 3.94 terahertz, and cocaine's at around 1.54 terahertz.

For years, Hu's lab has been developing novel types of quantum cascade lasers, called "photonic wire lasers." Like many lasers, these are bidirectional, meaning they emit light in opposite directions, which makes them less powerful. In traditional lasers, that issue is easily remedied with carefully positioned mirrors inside the laser's body. But it's very difficult to fix in terahertz lasers, because terahertz radiation is so long, and the laser so small, that most of the light travels outside the laser's body.

In the laser selected for GUSTO, the researchers had developed a novel design for the wire lasers' waveguides - which control how the electromagnetic wave travels along the laser - to emit unidirectionally. This achieved high efficiency and beam quality, but it didn't allow frequency tuning, which NASA required.

Taking a page from chemistry
Building on their previous design, Khalatpour took inspiration from an unlikely source: organic chemistry. While taking an undergraduate class at MIT, Khalatpour took note of a long polymer chain with atoms lined along two sides.

They were "pi-bonded," meaning their molecular orbitals overlapped to make the bond more stable. The researchers applied the concept of pi-bonding to their lasers, where they created close connections between otherwise-independent wire lasers along an array. This novel coupling scheme allows phase-locking of two or multiple wire lasers.

To achieve frequency tuning, the researchers use tiny "knobs" to change the current of each wire laser, which slightly changes how light travels through the laser - called the refractive index. That refractive index change, when applied to coupled lasers, creates a continuous frequency shift to the pair's center frequency.

For experiments, the researchers fabricated an array of 10 pi-coupled wire lasers. The laser operated with continuous frequency tuning in a span of about 10 gigahertz, and a power output of roughly 50 to 90 milliwatts, depending on how many pi-coupled laser pairs are on the array. The beam has a low beam divergence of 10 degrees, which is a measure of how much the beam strays from its focus over distances.

The researchers are also currently building a system for imaging with high dynamic range - greater than 110 decibels - which can be used in many applications such as skin cancer imaging. Skin cancer cells absorb terahertz waves more strongly than healthy cells, so terahertz lasers could potentially detect them. The lasers previously used for the task, however, are massive and inefficient, and not frequency-tunable. The researchers' chip-sized device matches or outstrips those lasers in output power, and offers tuning capabilities.

"Having a platform with all those performance metrics together ... could significantly improve imaging capabilities and extend its applications," Khalatpour says.


Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
GEDI scientists share space laser excitement
Greenbelt MD (SPX) Dec 03, 2018
A new NASA laser instrument set to launch to the International Space Station in December will help scientists create the first three-dimensional map of the world's temperate and tropical forests. The Global Ecosystem Dynamics Investigation, or GEDI, is scheduled to launch on SpaceX's Falcon 9 rocket. From the station, GEDI's advanced laser technology will reveal the three-dimensional structure of forest ecosystems around the globe. Ahead of the instrument's launch, GEDI scientists shared the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
George H.W. Bush's overlooked legacy in space exploration

UConn Research Project Heading to International Space Station

NASA sends new research, hardware to Space Station on SpaceX mission

PoSSUM scientist-astronaut candidates test novel space suits and biometric monitoring systems

TECH SPACE
Tesla CEO Elon Musk taunts US financial regulatory agency

Rocket Lab prepares to launch historic CubeSat mission for NASA

Arianespace Orbits GSAT-11 and Geo-Kompsat-2A for India and South Korea

SpaceX launches cargo, but fails to land rocket

TECH SPACE
InSight's robotic arm ready for some lifting on Mars

NASA's InSight lander 'hears' wind on Mars

NASA's Mars InSight Flexes Its Arm

Mars 2020 rover mission camera system 'Mastcam-Z' testing begins at ASU

TECH SPACE
Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

TECH SPACE
CAT rules in favour of Ofcom's EAN authorisation decision

Fleet Space Technologies' Centauri launched aboard SpaceX Falcon 9

Roscosmos Targeted by Info Attack to Hamper Revival of Space Industry in Russia

SAS Signs Distribution Agreement with GlobalSat Group

TECH SPACE
Terahertz laser for sensing and imaging outperforms its predecessors

Gaming firm settles VR lawsuit with Facebook-owned Oculus

Green production of chemicals for industry

Scientists discover a material breaking modern chemistry laws

TECH SPACE
Life in Deep Earth totals 15 to 23 billion tons of carbon

An exoplanet loses its atmosphere in the form of a tail

Unknown treasure trove of planets found hiding in dust

Radio Search for Artificial Emissions from 'Oumuamua

TECH SPACE
Radio JOVE From NASA: Tuning In to Your Local Celestial Radio Show

The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning

Encouraging prospects for moon hunters

Evidence for ancient glaciation on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.