Subscribe free to our newsletters via your
. 24/7 Space News .




IRON AND ICE
Joint team reveals asteroid's size for the first time
by Staff Writers
Boulder CO (SPX) Nov 12, 2014


File image.

When the double asteroid Patroclus-Menoetius passed directly in front of a star on the night of Oct. 20, a team of volunteer astronomers across the U.S. was waiting.

Observing the event, known as an occultation, from multiple sites where each observer recorded the precise time the star was obscured, yielded the first accurate determination of the two objects' size and shape. The analysis was led by Dr. Marc W. Buie, staff scientist in Southwest Research Institute's (SwRI) Space Studies Department in Boulder, Colo.

The team effort was a pilot program of the Research and Education Collaborative Occultation Network (RECON), whose recently announced expansion was made possible through a $1 million National Science Foundation grant.

Managed jointly by SwRI and Cal Poly (California Polytechnic State University), RECON supplies telescopes to schools and citizen scientists in rural western states from north-central Washington to southwest Arizona for occultation observations. With the grant, RECON membership will grow from 13 pilot communities to 40.

The October collaborative observations involved volunteers distributed east-west across the United States. Observers were from the International Occultation Timing Association (IOTA) as well as a subset of RECON's observer team. Eleven of 36 observation sites were able to record the occultation.

Seven of those were analyzed to estimate an outline, or an elliptical limb fit, of Patroclus of 125 kilometers (km) by 98 km. Six of the observations were combined for Menoetius and yielded a size of 117 km by 93 km.

"Previous estimates of the shape of the asteroid pair had indicated essentially spherical objects," Buie said. "Our new observations indicate a significantly more non-spherical shape, and that shape is identical for the two bodies."

Based on this occultation data combined with previous data, both objects possess axial ratios of 1.3:1.21:1, which indicates a mostly oblate shape, or one that appears flattened at the poles and slightly bulged at the equator.

"The very similar shapes of the pair suggest that they were both spinning much faster when they formed," Buie said. "The current system is in a doubly synchronous state, much like Pluto and Charon, where they orbit each other in the same time it takes for them to rotate."

This asteroid pair orbits the Sun in the Jupiter Trojan cloud of asteroids at 5 AU, or Astronomical Units, from the Sun. (One AU equals the distance from the Sun to Earth). "It shows striking similarities to objects from the more distant Kuiper Belt, suggesting that perhaps this object was relocated inward at some time in the early history of the solar system," Buie said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Southwest Research Institute's (SwRI)
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








IRON AND ICE
SwRI-led team telescope effort reveals asteroid's size for the first time
Boulder CO (SPX) Nov 11, 2014
When the double asteroid Patroclus-Menoetius passed directly in front of a star on the night of Oct. 20, a team of volunteer astronomers across the U.S. was waiting. Observing the event, known as an occultation, from multiple sites where each observer recorded the precise time the star was obscured, yielded the first accurate determination of the two objects' size and shape. The analysis w ... read more


IRON AND ICE
After Mars, India space chief aims for the moon

China examines the three stages of lunar test run

China gears up for lunar mission after round-trip success

NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

IRON AND ICE
UI instrument sees comet-created atmosphere on Mars

Mars Orbiter MAVEN Demonstrates Relay Prowess

China Exclusive: China developing Mars rover

Opportunity Dust Levels Back to Normal

IRON AND ICE
Weather delays Orion's move to launch pad, rescheduled for Tuesday

Alexander's rollercoaster ride from space to Germany

Virgin Galactic could resume test flights in six months

NASA Rocket Experiment Finds the Universe Brighter Than We Thought

IRON AND ICE
China publishes Earth, Moon photos taken by lunar orbiter

Mars probe to debut at upcoming air show

China plans to launch about 120 applied satellites

China to build global quantum communication network in 2030

IRON AND ICE
Astronaut turned Twitter star, Reid Wiseman, back on Earth

Three-man multinational space crew returns to Earth

International Space Station astronauts put GoPro camera in a floating ball of water

ISS Agency Heads Issue Joint Statement

IRON AND ICE
Orbital recommits to NASA Commercial program and Antares

SpaceX chief Musk confirms Internet satellite plan

Japanese Satellites Orbited as Part of Russia-Ukraine Program

Experimental flight of GSLV Mark 3 in December

IRON AND ICE
European satellite could discover thousands of planets in Earth's galaxy

NASA's Hubble Surveys Debris-Strewn Exoplanetary Construction Yards

Follow the Dust to Find Planets

NASA's TESS mission cleared for next development phase

IRON AND ICE
ORNL thermomagnetic processing method provides path to new materials

ORNL materials researchers get first look at atom-thin boundaries

Lockheed Martin partners for space debris research

Shaking the topological cocktail of success




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.