Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Surprise discovery in the search for energy efficient information storage
by Staff Writers
Nottingham, UK (SPX) Aug 17, 2017


File image.

Today almost all information stored on hard disc drives or cloud servers is recorded in magnetic media, because it is non-volatile (i.e. it retains the information when power is switched off) and cheap.

For portable devices such as mobile phones and tablets, other forms of non-magnetic memory are used because the technology based on magnetism is impractical and is not energy efficient. In an age of mass data storage and portable devices which collect and process information, the search is on to find smaller, faster, cheaper and more energy efficient ways, of both processing and storing increasing amounts of data.

In the course of their research into the use of magnetic domain walls (local regions of magnetic "charge" usually driven by magnetic fields) to increase our capacity for information storage and logical processing, physicists at the University of Nottingham have discovered a phenomenon which has allowed them to 'manipulate' the structure of a magnetic domain wall.

Dr Andrew Rushforth, from the School of Physics and Astronomy, said: "In the drive towards increasingly miniaturised, portable devices, the need to store and process information with low power consumption is becoming a critical issue. Concepts for information storage and logical processing based on magnetic domain walls have great potential for implementation in future information and communications technologies."

Magnetic media
The main benefit of using magnetism is the fact that the magnetic state remains stable when power is removed from the device, enabling non-volatile storage of information. By contrast, most processors and random access memory (RAM) chips store information using electrical charge which is fast, but dissipates when the device is powered down.

Magnetic random access memory (MRAM) is a promising form of non-volatile RAM based on magnetism which has recently found applications in some niche markets. In MRAM information is written using electrical current which generates heat and stray magnetic fields.

To date there are no technologies which use magnetism to process information.

Harnessing magnetism to process and store information
A solution to these problems may lie in the use of magnetic domain walls. A magnetic domain wall forms in a magnetic wire and separates regions where the magnetisation points in opposite directions. Under certain conditions it consists of a region in which the magnetisation rotates around a central vortex core, which points into or out of the wire.

An analogy would be the way in which water rotates around a vortex core as it drains down a plug hole. The sense of rotation of the magnetisation in the vortex wall - its chirality - can be clockwise or anticlockwise. There have been proposals to use the chirality to both store and process information. The problem is finding a way to manipulate the vortex domain wall.

Previously it has been shown that the chirality can be manipulated by applying magnetic fields to complicated nanowire geometries, but the use of magnetic fields is wasteful of energy and limits the ability to address individual domain walls selectively.

A surprising discovery
The researchers have discovered a way to control the chirality of the vortex domain wall using an electric field.

Dr Rushforth said: "We didn't set out to switch the chirality of the domain walls. We were actually trying to see if we could make them move. When we noticed that the chirality was switching, we were rather surprised, but we realised that it was an interesting and novel effect that could potentially have important applications. We then had to go back to the office and perform micromagnetic calculations to understand why and how the phenomenon occurs."

The team used the strain induced by an electric field applied to a piezoelectric material (which deforms mechanically in response to an electric field) to manipulate the chirality of the domain wall.

The knowledge is at an early stage. Until now it hasn't been obvious how one could control magnetic domain walls reversibly and predictably using electric fields. This research helps to solve that issue, but there remain practical issues to be addressed.

The next stage in the work will be to investigate how the chirality switching depends upon the material properties and the geometry and dimensions of the magnetic wire.

The University of Nottingham has filed a patent application for a memory device based on the effect.

Leaders in the field
The field of information processing using magnetic domain walls was pioneered by Professor Russell Cowburn of Cambridge University, but at the time at Durham University and Imperial College London, just over a decade ago.

The work at the University of Nottingham was funded by the Engineering and Physical Sciences Research Council (EPSRC) and was carried out in collaboration with the University of York. The experiments were carried out at the Diamond Light Source synchrotron, an x-ray facility funded by the Science and Technology Facilities Council (STFC) and Wellcome Trust near Oxford.

The use of electric field induced strain to control magnetic devices has become an area of increasing focus recently because it has been recognised that it is much more energy efficient than using magnetic fields or electrical currents. There are several academic groups around the world investigating this approach, including several groups in the UK.

Ultimately, it is hoped that it will lead to energy efficient memory chips and processors for use in portable devices such as laptops, phones and tablets.

The research carried out by researchers in the Spintronics Group in the School of Physics and Astronomy, in collaboration with York University, has been published in the open access journal Scientific Reports (Scientific Reports 7, Article number: 7613 (2017) doi:10.1038/s41598-017-07944-9). It could provide a route to creating a new class of highly efficient, non-volatile information processing and storage technology.

TECH SPACE
Clarifiying complex chemical processes with quantum computers
Zurich, Switzerland (SPX) Aug 07, 2017
Specialists expect nothing less than a technological revolution from quantum computers, which they hope will soon allow them to solve problems that are currently too complex for classical supercomputers. Commonly discussed areas of application include data encryption and decryption, as well as special problems in the fields of physics, quantum chemistry and materials research. But wh ... read more

Related Links
University of Nottingham
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA Offers Space Station as Catalyst for Discovery in Washington

Two Voyagers Taught Us How to Listen to Space

A look inside the Space Station's experimental BEAM module

Voyager spacecraft still in communication 40 years out into the void

TECH SPACE
ISRO Develops Ship-Based Antenna System to Track Satellite Launches

SpaceX Sets August 14 Launch Date for Next US Resupply Mission to ISS

VSS Unity Flies with Propulsion Systems Installed and Live

Space Launch System Solid Rocket Boosters 'on Target' for First Flight

TECH SPACE
For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

TECH SPACE
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

TECH SPACE
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Lockheed Martin invests $350M in state-of-the-art satellite production facility

Airbus DS to expand cooperation with Russia

TECH SPACE
Electricity and silver effective at keeping bacteria off plastics

Researchers 3-D print first truly microfluidic 'lab on a chip' devices

2-faced 2-D material is a first at Rice

Fewer defects from a 2-D approach

TECH SPACE
A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

Deep-sea animals eating plastic fibers from clothing

TECH SPACE
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement