Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Superlattice Cameras Add More 'Color' to Night Vision
by Staff Writers
Evanston IL (SPX) Oct 24, 2011


Center for Quantum Devices graduate student Edward Huang holds a lighter and a narrow-band filter centered at 11.3 m. The flame can only be seen when imaged with the band-pass detectors sensitive up to 13 m (right) but not in the ones with shorter detection wavelength up to 9.5 m (left).

Recent breakthroughs have enabled scientists from the Northwestern University's Center for Quantum Devices to build cameras that can see more than one optical waveband or "color" in the dark.

The semiconducting material used in the cameras - called type-II superlattices - can be tuned to absorb a wide range of infrared wavelengths, and now, a number of distinct infrared bands at the same time.

The idea of capturing light simultaneously at different wavelengths isn't new. Digital cameras in the visible spectrum are commonly equipped with detectors that sense red, green, and blue light to replicate a vast majority of colors perceived by the human eye.

Multi-color detection in the infrared spectrum, however, offers unique functionalities beyond color representation. The resonant frequencies of compounds can often be found in this spectral range, which means that chemical spectroscopy can be relayed in images real-time.

"When coupled with image-processing algorithms performed on multiple wavebands, the amount of information rendered in a particular scene is tremendous," said Manijeh Razeghi, Walter P. Murphy Professor in Electrical Engineering and Computer Science at the McCormick School of Engineering and director of the Center for Quantum Devices.

Razeghi's group engineered the detection energies on the cameras to be extremely narrow, close to one-tenth of an electron volt, in what is known as the long-wave infrared window. Creating the cameras was difficult, however, because the light-absorbing layers are prone to parasitic effects.

Furthermore, the detectors were designed to be stacked one on top of another, which provided spatially coincident pixel registration but added significantly to the growth and fabrication challenges.

Nevertheless, a dual-band long-wave infrared 320-by-256 sized type-II superlattice camera was demonstrated for the first time in the world, the results of which were published in the July 2011 issue of Optics Letters.

Such infrared photon cameras based on another material called HgCdTe were used in disaster relief in March 2011 when a catastrophic tsunami damaged Japans' nuclear reactors.

These cameras provided accurate temperature information about the reactors from unmanned aerial vehicles, providing officials the information they needed to orchestrate cooling efforts and prevent nuclear meltdown.

HgCdTe, however, is considered to be an expensive technology in the long-wave infrared due to its poor spectral uniformity and therefore yield - areas in which type-II superlattices may prove more efficient.

"Type-II superlattices can be grown uniformly even at very long-wavelengths because its energy gap is determined by the alternating InAs and GaSb quantum well thicknesses, rather than its composition as is the case with HgCdTe," Razeghi said.

The high-resolution multi-band type-II superlattice camera also offered very impressive performances, requiring only 0.5 milliseconds to capture a frame with temperature sensitivities as good as 0.015C. "The high-performance, multi-functionality, and low cost offered by type-II superlattices truly make it an attractive infrared technology," she added.

.


Related Links
McCormick School of Engineering and Applied Science
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
A new scheme for photonic quantum computing
Vienna, Austria (SPX) Oct 17, 2011
The concepts of quantum technology promise to achieve more powerful information processing than is possible with even the best possible classical computers. To actually build efficient quantum computers remains a significant challenge in practice. A new scheme termed "coherent photon conversion", could potentially overcome all of the currently unresolved problems for optical implementation ... read more


CHIP TECH
Lunar Probe to search for water on Moon

Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

CHIP TECH
Opportunity Past 21 Miles of Driving! Will Spend Winter at Cape York

Scientists develope new way to determine when water was present on Mars and Earth

Mars Rover Carries Device for Underground Scouting

Mars Landing-Site Specialist

CHIP TECH
Space tourism gaining momentum

NASA Veteran Alan Stern to Lead Florida Space Institute

Astrotech Subsidiary Awarded Task Order for NASA Mission

ASU in space: 7 current missions, more in the wings

CHIP TECH
Thousands of dreams to fly on Shenzhou 8

China's first space lab module in good condition

Takeoff For Tiangong

Snafu as China space launch set to US patriotic song

CHIP TECH
ISS orbit readjusted by 3 km

Expedition 30 to ISS could be launched on Dec 21

ISS could be used for satellite assembly until 2028

Ultrasound 2: Taking Space Imaging to the Next Level

CHIP TECH
SpaceX Completes Key Milestone to Fly Astronauts to International Space Station

ILS Proton Launches ViaSat-1 for ViaSat

Final checks for first Soyuz launch from Kourou

Soyuz is put through its paces for Thursday's launch

CHIP TECH
UH Astronomer Finds Planet in the Process of Forming

Nearby planet-forming disk holds water for thousands of oceans

Herschel discovers tip of cosmic iceberg around nearby young star

NASA's Spitzer Detects Comet Storm In Nearby Solar System

CHIP TECH
Space Waste Transporter: Going Where No Garbage Man has Gone Before

Netflix loses 810,000 US subscribers

German satellite re-enters Earth's atmosphere

Proposal would 'recycle' satellite parts




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement