. 24/7 Space News .
IRON AND ICE
Supercharged light pulverises asteroids, study finds
by Staff Writers
Warwick UK (SPX) Feb 11, 2020

Radiation from dying stars is luminous enough to easily spin up orbiting asteroids to break-up speed. (File illustration only)

The majority of stars in the universe will become luminous enough to blast surrounding asteroids into successively smaller fragments using their light alone, according to a University of Warwick astronomer.

Electromagnetic radiation from stars at the end of their 'giant branch' phase - lasting just a few million years before they collapse into white dwarfs - would be strong enough to spin even distant asteroids at high speed until they tear themselves apart again and again. As a result, even our own asteroid belt will be easily pulverized by our Sun billions of years from now.

The new study from the University of Warwick's Department of Physics, published in Monthly Notices of the Royal Astronomical Society, analyses the number of successive break-up events and how quickly this cascade occurs.

The authors have concluded that all but the most distant or smallest asteroids in a system would be disintegrated in a relatively short one million years, leaving behind debris that scientists can find and analyse around dead white dwarf stars. Some of this debris may be in the form of 'double asteroids' which revolve around each other while they orbit the Sun.

After main sequence stars like our Sun have burnt all their hydrogen fuel, they then become hundreds of times larger during a 'giant branch' phase and increase their luminosity ten-thousand-fold, giving out intense electromagnetic radiation. When that expansion stops, a star sheds its outer layers, leaving behind a dense core known as a white dwarf.

The radiation from the star will be absorbed by orbiting asteroids, redistributed internally and then emitted from a different location, creating an imbalance. This imbalance creates a torque effect that very gradually spins up the asteroid, eventually to break-up speed at one full rotation every 2 hours (the Earth takes almost 24 hours to complete a full rotation). This effect is known as the YORP effect, named after four scientists (Yarkovsky, O'Keefe, Radzievskii, Paddack) who contributed ideas to the concept.

Eventually, this torque will pull the asteroid apart into smaller pieces. The process will then repeat itself in several stages, much like how in the classic arcade game 'Asteroids' they break down into smaller and smaller asteroids after each destruction event. The scientists have calculated that in most cases there will be more than ten fission events - or break-ups - before the pieces become too small to be affected.

Lead author Dr Dimitri Veras, from the University of Warwick's Astronomy and Astrophysics Group, said: "When a typical star reaches the giant branch stage, its luminosity reaches a maximum of between 1,000 and 10,000 times the luminosity of our Sun. Then the star contracts down into an Earth-sized white dwarf very quickly, where its luminosity drops to levels below our Sun's. Hence, the YORP effect is very important during the giant branch phase, but almost non-existent after the star has become a white dwarf.

"For one solar-mass giant branch stars - like what our Sun will become - even exo-asteroid belt analogues will be effectively destroyed. The YORP effect in these systems is very violent and acts quickly, on the order of a million years. Not only will our own asteroid belt be destroyed, but it will be done quickly and violently. And due solely to the light from our Sun."

The remains of these asteroids will eventually form a debris disc around the white dwarf, and the disc will be drawn into the star, 'polluting it'. This pollution can be detected from Earth by astronomers and analysed to determine its composition.

Dr Veras adds: "These results help locate debris fields in giant branch and white dwarf planetary systems, which is crucial to determining how white dwarfs are polluted. We need to know where the debris is by the time the star becomes a white dwarf to understand how discs are formed. So the YORP effect provides important context for determining where that debris would originate."

When our Sun dies and runs out of fuel in about 6 billion years it too will shed its outer layers and collapse into a white dwarf. As its luminosity grows it will bombard our asteroid belt with increasingly intense radiation, subjecting the asteroids to the YORP effect and breaking them into smaller and smaller pieces, just like in a game of 'Asteroids'.

Most asteroids are what are known as 'rubble piles' - a collection of rocks loosely held together - which means they have little internal strength. However, smaller asteroids have greater internal strength, and while this effect will break down larger objects quite quickly, the debris will plateau at objects around 1-100 metres in diameter. Once the 'giant branch' phase starts the process will continue unabated until reaching this plateau.

The effect lessens with increasing distance from the star and with increasing internal strength of the asteroid. The YORP effect can break up asteroids at hundreds of AU (Astronomical Units), much further away than where Neptune or Pluto resides.

However, the YORP effect will only influence asteroids. Objects larger than Pluto will likely escape this fate due to their size and internal strength - unless they are broken up by another process, such as a collision with another planet.

Research Report: 'Post-main-sequence debris from rotation-induced YORP break-up of small bodies II: multiple fissions, internal strengths and binary production'


Related Links
University Of Warwick
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Roscosmos to rename Russia's asteroid detection system to 'Milky Way'
Moscow (Sputnik) Jan 29, 2020
The Russian automated tool of monitoring hazardous situations in near-Earth space will be given a new name of "Milky Way," the first deputy director of Russian space agency Roscosmos, Yury Urlichich, said on Tuesday. "We have decided to rename the system to 'Milky Way.' As of today, it is called the NES ASPOS [Warning Automated System of Hazardous Situations in near-Earth Space]", Urlichich said during the annual Academic Space Conference, named after Soviet rocket engineer Sergei Korolev. A ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
The science behind and beyond Luca's mission

Record-Setting NASA Astronaut, Crewmates Return from Space Station

AdvancingX announces collaborative agreement with ISS National Lab

Space station to forge ultra-fast connections

IRON AND ICE
Getting your payload to orbit

India, Russia Agree to Develop Advanced Ignition Systems to Propel Futuristic Rockets, Missiles

NASA, Europe space agency launch Solar Orbiter mission

Systima Technologies expands workforce to support hypersonic programs

IRON AND ICE
Mars 2020 equipped with laser vision and better mics

MAVEN explores Mars to understand radio interference at Earth

Mars' water was mineral-rich and salty

Russian scientists propose manned Base on Martian Moon to control robots remotely on red planet

IRON AND ICE
China's Long March-5B carrier rocket arrives at launch site

China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

IRON AND ICE
Maxar Technologies will build Intelsat Epic geostationary communications satellite with NASA hosted payload

Australia's first space incubator seeks global applicants for 2020 program

OneWeb lifts off: Next batch ready to launch

Arianespace and Starsem launch 34 OneWeb satellites to help bridge the digital divide

IRON AND ICE
First time controlling two spacecraft with one dish

New threads: Nanowires made of tellurium and nanotubes hold promise for wearable tech

Fastest high-precision 3D printer

AFRL, partners develop innovative tools to accelerate composites certification

IRON AND ICE
Distant giant planets form differently than 'failed stars'

CHEOPS space telescope takes its first pictures

NASA's Webb will seek atmospheres around potentially habitable exoplanets

To make amino acids, just add electricity

IRON AND ICE
Pluto's icy heart makes winds blow

Why Uranus and Neptune are different

Seeing stars in 3D: The New Horizons Parallax Program

Looking back at a New Horizons New Year's to remember









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.