Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Super-rare, super-luminous supernovae are likely explosion of universe's earliest stars
by Staff Writers
Toronto, Canada (SPX) Nov 02, 2012


illustration only

The most-distant, super-luminous supernovae found to date have been observed by an international team, including Raymond Carlberg of the University of Toronto's Department of Astronomy and Astrophysics. The stellar explosions would have occurred at a time when the universe was much younger and probably soon after the Big Bang.

"The objects are both unusually bright and unusually slow to fade. These are properties that are consistent with what is known as pair-instability supernova, a rare mechanism for explosion which is expected to happen for high-mass stars with almost no metal content. That is, the very first stars to form," said Carlberg.

The two supernovae, identified as SN2213 and SN1000+2016, were discovered in image data obtained via the Canada-France-Hawaii Telescope Legacy Survey. In recent years, various surveys have enabled astronomers to open new windows on the universe, including the discovery over the past decade of super-luminous supernovae that are tens to hundreds of times more luminous than regular supernovae.

"The Canada-France-Hawaii Telescope Legacy Survey stands out as the first really deep survey of the sky, covering large volumes of the universe," said Carlberg, a Canadian leader of the Survey.

All of the processing of the image data was done at U of T using a search technique that first vastly narrows the search to the high redshift star-forming galaxies and then looks for supernovae that are more luminous than normal supernovae and have unusually long fading times - precisely the characteristics of pair-instability supernovae.

The pair-instability explosion mechanism only occurs in stars that are about 150-300 times more massive than the sun, explains Carlberg. No stars that massive form in the current universe because as stars are assembled they start nuclear burning and push away additional gas. However, in the very early days of the universe, the metal abundance of the gas is essentially zero, making it almost transparent so that it can fall on the forming star.

Such massive stars do not last long. They are so hot in the centre that pressure is lost causing a collapse to start, which then heats up the core even more. Eventually enough oxygen and silicon are created that their fusion causes a nuclear explosion much more luminous than other supernova mechanisms.

The paper, entitled "Super-luminous Supernova Discoveries at z=2.05 and z=3.90," is published online in Nature and will appear in the November 8 print edition. The team also includes scientists from Swinburne University of Technology, Oxford, Wiezmann Institute of Science, University of California, Irvine and San Diego State University.

.


Related Links
University of Toronto
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Stars Ancient and Modern?
Munich, Germany (SPX) Nov 01, 2012
This colourful view of the globular star cluster NGC 6362 was captured by the Wide Field Imager attached to the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. This new picture, along with a new image of the central region from the NASA/ESA Hubble Space Telescope, provide the best view of this little-known cluster ever obtained. Globular clusters are mainly composed of ... read more


STELLAR CHEMISTRY
Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

Astrium presents results of its study into automatic landing near the Moon's south pole

European mission to search for moon water

STELLAR CHEMISTRY
Curiosity's Tastes of Martian Soil Offer Insights on Mineral Composition

NASA Rover's First Soil Studies Help Fingerprint Martian Minerals

Curiosity on Mars sits on rocks similar to those found in marshes in Mexico

Continuing Work With Scoops at 'Rocknest'

STELLAR CHEMISTRY
Voyager observes magnetic field fluctuations in heliosheath

New NASA Online Science Resource Available for Educators and Students

'First' Pakistan astronaut wants to make peace in space

Space daredevil Baumgartner is 'officially retired'

STELLAR CHEMISTRY
China to launch 11 meteorological satellites by 2020

China makes progress in spaceflight research

Patience for Tiangong

China launches civilian technology satellites

STELLAR CHEMISTRY
Crew Prepares for Spacewalk After Progress Docks

Crew Preparing for Cargo Ship, Spacewalk

Russian cargo ship docks with ISS: official

Packed Week Ahead for Six-Member Crew

STELLAR CHEMISTRY
Ariane 5s are readied in parallel for Arianespace's next heavy-lift flights

Japan Plans to Launch New Carrier Rocket in 2013

EUTELSAT 21B and Star One C3 Set For Ariane 5 November Launch

Launcher assembly begins for Arianespace's seventh Ariane 5 mission in 2012

STELLAR CHEMISTRY
Physicists confirm first planet discovered in a quadruple star system

Planet-hunt data released to public

New Study Brings a Doubted Exoplanet 'Back from the Dead'

New small satellite will study super-Earths for ESA

STELLAR CHEMISTRY
Space Station's Orbit Raised to Avoid Space Junk

Zynga builds new version of social game 'CityVille'

SSBV Aerospace and Technology Group and SpaceMetric announce signing of MOU

UC Research Brings Us Step Closer to Rollable, Foldable e-Devices




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement