. 24/7 Space News .
NANO TECH
Subset of carbon nanotubes poses cancer risk similar to asbestos in mice
by Staff Writers
Washington DC (SPX) Nov 09, 2017


The investigators stress that the danger is posed only by types of nanomaterials that are long, thin, and biopersistent - meaning that they are not broken down inside the body: "these long, thin nanotubes are very similar to asbestos in their structural and physical characteristics," MacFarlane says.

Nanotechnology, the science of developing materials containing very small fibers, is having a growing influence on daily life. Now researchers have shown for the first time in mice that long and thin nanomaterials called carbon nanotubes may have the same carcinogenic effect as asbestos: they can induce the formation of mesothelioma.

The findings were observed in 10%-25% of the 32 animals included in the study, which has not yet been replicated in humans. The work appears November 6 in Current Biology.

Long carbon nanotubes are a subtype of nanotubes used in the manufacture of incredibly strong, yet lightweight, materials that are increasingly being used in a number of industrial and consumer products, including sports equipment such as helmets and bicycles, aircrafts and sports cars, and computer motherboards.

"Unlike previously reported short-term studies, this is the first time the effects of long and thin carbon nanotubes, leading to mesothelioma, have been monitored in mice over many months," says senior author Marion MacFarlane, a Professor at the Medical Research Council (MRC) Toxicology Unit in Leicester, UK.

"Importantly, not all nanofibers pose a hazard," she adds. "We want our research to inform manufacturers and regulators about safer options when a nanofiber is being selected for the production of nanomaterials for emerging technologies"

"The outcomes seen in this paper will thus help contribute to a 'Safe by Design' approach," says first author Tatyana Chernova, a senior staff scientist at MRC.

In the animal experiments, the investigators placed long carbon nanotubes in the pleura, the area around the lungs where mesothelioma develops in humans.

"In that way, we followed changes in the pleura throughout disease development, observing stages of chronic inflammation, activation of pro-oncogenic signaling pathways, and eventually inactivation and/or loss of genes that are the gatekeepers of cancer development," MacFarlane says. The mesothelioma caused by long carbon nanotubes mice was in many ways similar to tumor samples from patients.

The investigators stress that the danger is posed only by types of nanomaterials that are long, thin, and biopersistent - meaning that they are not broken down inside the body: "these long, thin nanotubes are very similar to asbestos in their structural and physical characteristics," MacFarlane says.

"The immune system does a good job of recognizing nanotubes that are shorter, thicker, or tangled up. They can be phagocytized by macrophages and cleared out of the body."

Another important set of findings came out of the work: the researchers learned new details about what happens during the very long latency of mesothelioma development and provided new information on the mechanism by which mesothelioma develops.

Observations in the mice showed that chronic inflammation caused by long nanotubes led to inactivation of the same genes observed to be disrupted in people with mesothelioma. The researchers found that hypermethylation and silencing of the Cdkn2a locus ultimately led to loss of the tumor suppressor proteins p16 and p19.

"Because mesothelioma is diagnosed when it's quite advanced, we don't know much about the early mechanisms by which it forms," Chernova says. "This research could help us find biomarkers for early detection, as well as provide information for developing targeted therapies for this devastating disease."

Current Biology, Chernova et al. "Long-Fiber Carbon Nanotubes Replicate Asbestos-Induced Mesothelioma with Disruption of the Tumor Suppressor Gene Cdkn2a (Ink4a/Arf)"

NANO TECH
Gold nanoantennas help in creation of more powerful nanoelectronics
Tomsk, Russia (SPX) Nov 03, 2017
Scientists from Tomsk Polytechnic University and their colleagues from Germany have conducted an experiment which demonstrated the behavior of areas of two-dimensional materials which are applied in advanced electronics. It comes to devices that are in the research stage and will be used for the creation of flexible displays for smartphones and other gadgets, flexible optical and computing schem ... read more

Related Links
Cell Press
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
How Does Your Space Garden Grow

NanoRacks Deploys Second Kaber-Class Microsatellite This Week, First On-Orbit Assembly

Saudi Arabia to invest $1 billion in Virgin Galactic

Mice, fish and flies: the animals still being sent into space

NANO TECH
Launch your design with Cheops

NASA Selects Studies for Gateway Power and Propulsion Element

Arianespace to launch Embratel Star One D2

What Ever Happened to Sea Launch?

NANO TECH
Martian Ridge Brings Out Rover's Color Talents

Next Mars Rover Will Have 23 'Eyes'

In desert of Oman, a gateway to life on Mars

Winters leave marks on Mars' sand dunes

NANO TECH
China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

NANO TECH
New Chinese sat comms company awaits approval

Myanmar to launch own satellite system-2 in 2019: vice president

Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

Turkey, Russia to Enhance Cooperation in the Field of Space Technologies

NANO TECH
New insights into metamaterial magic

Tech increases microfluidic research data output 100-fold

Jellyfish-inspired electronic skin glows when it gets hurt

Novel technique reveals the intricate beauty of a cracked glass

NANO TECH
Overlooked Treasure: The First Evidence of Exoplanets

Atmospheric beacons guide NASA scientists in search for life

Scientists discover new type of deep-sea hunting called kleptopredation

Evolutionary theory suggests aliens might not look all that alien

NANO TECH
Jupiter's X-ray auroras pulse independently

Haumea, the most peculiar of Pluto companions, has a ring around it

Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.