. 24/7 Space News .
EARLY EARTH
Study suggests Earth could have supported continental crust, life earlier than thought
by Staff Writers
Chicago IL (SPX) Jun 11, 2018

Scientists studied 3.9-billion-year-old rocks from Nuvvuagittuq, Canada, and found evidence for an earlier formation of the crust.

The early Earth might have been habitable much earlier than thought, according to new research from a group led by University of Chicago scientists.

Counting strontium atoms in rocks from northern Canada, they found evidence that the Earth's continental crust could have formed hundreds of millions of years earlier than previously thought. Continental crust is richer in essential minerals than younger volcanic rock, which would have made it significantly friendlier to supporting life.

"Our evidence, which squares with emerging evidence including rocks in western Australia, suggests that the early Earth was capable of forming continental crust within 350 million years of the formation of the solar system," said Patrick Boehnke, the T.C. Chamberlin Postdoctoral Fellow in the Department of Geophysical Sciences and the first author on the paper. "This alters the classic view, that the crust was hot, dry and hellish for more than half a billion years after it formed."

One of the open questions in geology is how and when some of the crust--originally all younger volcanic rock--changed into the continental crust we know and love, which is lighter and richer in silica. This task is made harder because the evidence keeps getting melted and reformed over millions of years. One of the few places on Earth where you can find bits of crust from the very earliest epochs of Earth is in tiny flecks of apatite imbedded in younger rocks.

Luckily for scientists, some of these "younger" minerals (still about 3.9 billion years old) are zircons--very hard, weather-resistant minerals somewhat similar to diamonds. "Zircons are a geologist's favorite because these are the only record of the first three to four hundred million years of Earth. Diamonds aren't forever--zircons are," Boehnke said.

Plus, the zircons themselves can be dated. "They're like labeled time capsules," said Prof. Andrew Davis, chair of the Department of Geophysical Sciences and a coauthor on the study.

Scientists usually look at the different variants of elements, called isotopes, to tell a story about these rocks. They wanted to use strontium, which offers clues to how much silica was around at the time it formed. The only problem is that these flecks are absolutely tiny--about five microns across, the diameter of a strand of spider silk--and you have to count the strontium atoms one by one.

This was a task for a unique instrument that came online last year: the CHicago Instrument for Laser Ionization, or CHILI. This detector uses lasers that can be tuned to selectively pick out and ionize strontium. When they used CHILI to count strontium isotopes in rocks from Nuvvuagittuq, Canada, they found the isotope ratio suggested plenty of silica was present when it formed.

This is important because the makeup of the crust directly affects the atmosphere, the composition of seawater, and nutrients available to any budding life hoping to thrive on planet Earth. It also may imply there were fewer meteorites than thought pummeling the Earth at this time, which would have made it hard for continental crust to form.

"Having continental crust that early changes the picture of early Earth in a number of ways," said Davis, who is also a professor with the Enrico Fermi Institute. "Now we need a way for the geologic processes that make the continents to happen much faster; you probably need water and magma that's about 600 degrees Fahrenheit less hot."

The study is also confluent with a recent paper by Davis and Boehnke's colleague Nicolas Dauphas, which found evidence for rain falling on continents 2.5 billion years ago, earlier than previously thought.

Research paper


Related Links
University of Chicago
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Did extreme fluctuations in oxygen, not a gradual rise, spark the Cambrian explosion?
Boulder CO (SPX) Jun 07, 2018
Five hundred and forty million years ago, during the Cambrian period, life suddenly went nuts. "Blossomed" is far too mild a word: instead, geologists call this sudden diversification an "explosion." But what exactly sparked the Cambrian explosion? Now, a new study suggests that wild swings in oxygen levels may have sent life scrambling to adapt, leading to a major burst of diversity. That, says lead author Guangyi Wei of Yale University, challenges the long-held explanation that gradually rising ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Second Space Station mission for Alexander Gerst begins

New Era of Space Exploration is "Internet of Tomorrow"

Crew from Germany, US, Russia board ISS

New crew blasts off for ISS

EARLY EARTH
US Senate introduces measure to upgrade defense against hypersonic threats

First Engine Assembled for DARPA and Boeing Reusable Experimental Spaceplane

Lockheed Martin Wins Potential $928 Million Contract to Develop New Hypersonic Missile for the Air Force

Watch live: SpaceX to launch SES-12 communications satellite

EARLY EARTH
Mars rover Opportunity hunkers down during dust storm

More building blocks of life found on Mars

Curiosity rover finds organic matter, unidentified methane source on Mars

NASA finds ancient organic material, mysterious methane on Mars

EARLY EARTH
Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

China develops wireless systems for rockets

EARLY EARTH
Liftoff as Alexander Gerst returns to space

Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

The European Space Agency welcomes European Commission's proposal on space activities

Spain's first astronaut named science minister

EARLY EARTH
JUICE comes in from extreme temperature test

Cooling by laser beam

Large-scale and sustainable 3D printing with the most ubiquitous natural material

Engineers convert commonly discarded material into high-performance adhesive

EARLY EARTH
Chandra Scouts Nearest Star System for Possible Hazards

Researchers discover multiple alkali metals in unique exoplanet

The Clarke exobelt, a method to search for possible extraterrestrial civilizations

Researchers discover a system with three Earth-sized planets

EARLY EARTH
Juno Solves 39-Year Old Mystery of Jupiter Lightning

NASA Re-plans Juno's Jupiter Mission

New Horizons Wakes for Historic Kuiper Belt Flyby

Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.