. 24/7 Space News .
WATER WORLD
Study shows many lakes getting murkier, but gives hope for improvement
by Staff Writers
Madison WI (SPX) Dec 02, 2016


Clear lakes, like northern Wisconsin's Trout Lake, are most susceptible to becoming murkier in wet years, but limiting farming in riparian areas can help buffer them from increased runoff. Image courtesy Adam Hinterthuer, UW-Madison Center for Limnology. For a larger version of this image please go here.

A study of more than 5,000 Wisconsin lakes shows that nearly a quarter of them have become murkier in the past two decades. It also shows this trend could get worse as a changing climate leads to increased precipitation.

However, the study - led by researchers at the University of Wisconsin-Madison and the Wisconsin Department of Natural Resources - reveals that reducing the amount of agricultural land immediately surrounding Wisconsin's waterways could improve water clarity by limiting nutrient runoff. It also shows most lakes have stayed the same and some are even seeing an improvement in clarity.

"In the face of increasing precipitation, this analysis provides empirical support for the fact that adapting our landscape is going to be important into the future," says co-author Monica Turner, a UW-Madison professor of zoology.

Specifically, limiting farming to 10 percent or less of the so-called riparian buffer zone around a lake and the streams flowing into it can improve water clarity. The riparian buffer refers to the vegetation immediately adjacent to a body of water. Implementing such actions also benefits farmers, as they suffer less damage to their croplands during heavy rains, Turner says.

Using more than 25 years of data collected by citizen scientists, the DNR and the federal government, the researchers analyzed Wisconsin's lakes to identify not just trends in water clarity (an indicator of lake health) but also how the landscape and the climate interact to determine year-to-year fluctuations.

While their results show water clarity in the majority of lakes has not changed and six percent of lakes are on an upward trend, the fact that more lakes are getting worse signals there is work to be done.

"If we want to maintain or improve water clarity, we need to think about trends in precipitation," says lead author Kevin Rose, formerly a postdoctoral researcher at UW-Madison and now an assistant professor of freshwater ecology at Rensselaer Polytechnic Institute in New York.

The study, published in the journal Ecological Applications, shows that wet years (like the current one) can be especially hard on lakes that typically have greater water clarity, like those found in northern Wisconsin. Clear lakes are more sensitive to the onslaught of nutrients and plant matter flushed in by the rain, which can cause water to turn murky, brown and green.

Mitigating the negative impacts of more rain, however, will require managing land in ways the research team didn't expect. They approached the study thinking that what happens across an entire watershed, such as where and how the landscape is farmed, would impact water clarity, especially during wet years.

While the results indicate broad-scale land use does matter during dry years, the opposite is true in years with higher precipitation, when water clarity is more dependent on how the land is managed in particular places. Namely, riparian areas with less agriculture fare better and can play a significant role in reducing nutrient runoff, Rose says.

"This study provides on-the-ground evidence that is consistent with what our computer models are telling us," says Turner, referring specifically to model results produced by the Water Sustainability and Climate Project at UW-Madison. The models indicate that water quality in Wisconsin could decline as precipitation increases into the future without concrete efforts on the landscape to buffer waterways and reverse the trend.

The study, Turner adds, also highlights the importance of looking ahead to anticipate how climate and landscape changes will affect Wisconsin's lakes and what we can do now to prevent future problems while also protecting Wisconsin's farming industry.

"It absolutely provides evidence for the importance of continuing to look for solutions to sustain the economy of Wisconsin without sacrificing the quality of our water," she says.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wisconsin-Madison
Water News - Science, Technology and Politics






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Glowing crystals can detect, cleanse contaminated drinking water
Berkeley CA (SPX) Nov 30, 2016
Tiny, glowing crystals designed to detect and capture heavy-metal toxins such as lead and mercury could prove to be a powerful new tool in locating and cleaning up contaminated water sources. Motivated by publicized cases in which high levels of heavy metals were found in drinking water in Flint, Mich., and Newark, N.J., a science team led by researchers at Rutgers University used intense X-rays ... read more


WATER WORLD
Space Food Bars Will Keep Orion Weight Off and Crew Weight On

Russian Space Sector Overcomes Failures

Embry-Riddle Students Join Project PoSSUM to Test Prototype Spacesuits in Zero-G

Proton Rocket Transported to Russian Spaceport Ahead of Satellite Launch

WATER WORLD
Ariane 5's impressive 75 in-a-row launch record

Vega ready for GOKTURK-1A to be encapsulated

Star One D1 arrives for heavy-lift Ariane 5 in Dec with 2 SSL-built satellites

SLS propulsion system goes into Marshall stand ahead of big test series

WATER WORLD
First views of Mars show potential for ESA's new orbiter

ExoMars space programme needs an extra 400 million euros

Opportunity team onsidering a new route due to boulder field

Mars Ice Deposit Holds as Much Water as Lake Superior

WATER WORLD
China launches 4th data relay satellite

Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

WATER WORLD
Thales and SENER to jointly supply optical payloads for space missions

Citizens' space debate: the main findings and the future

Two-year extensions confirmed for ESA's science missions

Vita: next Space Station mission name and logo

WATER WORLD
Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

Understanding the way liquid spreads through paper

Laser-based Navigation Sensor Could Be Standard for Planetary Landing Missions

Inside tiny tubes, water turns solid when it should be boiling

WATER WORLD
Timing the shadow of a potentially habitable extrasolar planet

Fijian ants began farming 3 million years ago

Researchers propose low-mass supernova triggered formation of solar system

Scientists from the IAC discover a nearby 'superearth'

WATER WORLD
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.