. 24/7 Space News .
TIME AND SPACE
Study offers new theoretical approach to describing non-equilibrium phase transitions
by Staff Writers
Lemont IL (SPX) Apr 27, 2017


Two Argonne physicists offered a way to mathematically describe a particular physics phenomenon called a phase transition in a system out of equilibrium (that is, with energy moving through it) by using imaginary numbers. The illustration relates the phase transition to the change between mathematical Mobius transformations (a, b, and c). The theory of out-of-equilibrium physics is a long-sought goal in the field, and could eventually help us design better electronics. Image courtesy Vinokur/Galda/Argonne National Laboratory.

Imaginary numbers are a solution to a very real problem in a study published this week in Scientific Reports. Two physicists at the U.S. Department of Energy's Argonne National Laboratory offered a way to mathematically describe a particular physics phenomenon called a phase transition in a system out of equilibrium. Such phenomena are central in physics, and understanding how they occur has been a long-held and vexing goal; their behavior and related effects are key to unlocking possibilities for new electronics and other next-generation technologies.

In physics, "equilibrium" refers to a state when an object is not in motion and has no energy flowing through it. As you might expect, most of our lives take place outside this state: we are constantly moving and causing other things to move.

"A rainstorm, this rotating fan, these systems are all out of equilibrium," said study co-author of the Valerii Vinokur, an Argonne Distinguished Fellow and member of the joint Argonne-University of Chicago Computation Institute. "When a system is in equilibrium, we know that it is always at its lowest possible energy configuration, but for non-equilibrium this fundamental principle does not work; and our ability to describe the physics of such systems is very limited."

He and co-author Alexey Galda, a scientist with Argonne and the University of Chicago's James Franck Institute, had been working on ways to describe these systems, particularly those undergoing a phase transition - such as the moment during a thunderstorm when the charge difference between cloud and ground tips too high, and a lightning strike occurs.

They found their new approach to non-equilibrium physics in a new branch of quantum mechanics. In the language of quantum mechanics, the energy of a system is represented by what is called a Hamiltonian operator. Traditionally, quantum mechanics had held that the operator to represent the system cannot contain imaginary numbers if it would mean the energy does not come out as a "real" and positive value - because the system actually does exist in reality. This condition is called Hermiticity.

But physicists have been taking a harder look at operators that violate Hermiticity by using imaginary components, Vinokur said; several such operators discovered a few years ago are now widely used in quantum optics.

"We noticed that such operators are a beautiful mathematical tool to describe out-of-equilibrium processes," he said.

To describe the phase transition, Galda and Vinokur wrote out the Hamiltonian operator, introduced an applied force to take it out of equilibrium, and then they made the force imaginary.

"This is a trick which is illegal from any common-sense point of view; but we saw that this combination, energy plus imaginary force, perfectly mathematically describes the dynamics of the system with friction," Vinokur said.

They applied the trick to describe other out-of-equilibrium phase transitions, such as a dynamic Mott transition and a spin system, and saw the results agreed with either observed experiments or simulations.

In their latest work, they connected their description with an operation called a Mobius transformation, which appears in a branch of mathematics called topology. "We can understand non-equilibrium transitions now as topological transitions in the space of energy," Galda said.

This bit of quantum mischief needs to be understood more deeply, they said, but is valuable all the same; the theory describes basic areas of physics that are of great interest for next-generation electronics technology.

"For the moment the connection with topology looks like mathematical candy, a beautiful thing we can't yet use, but we know from history that if the math is elegant enough, very soon its practical implications follow," Vinokur said.

The study, "Linear dynamics of classical spin as Mobius transformation," was funded by the U.S. Department of Energy's Office of Science, Office of Basic Energy Sciences (Materials Science and Engineering Division).

TIME AND SPACE
Quantum mechanics are complex enough, for now...
Vienna, Austria (SPX) Apr 24, 2017
Quantum mechanics is based on a set of mathematical rules, describing how the quantum world works. These rules predict, for example, how electrons orbit a nucleus in an atom, and how an atom can absorb photons, particles of light. The standard rules of quantum mechanics work extremely well, but, given that there are still open questions regarding the interpretation of quantum mechanics, sc ... read more

Related Links
Argonne National Laboratory
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
12 Scientist-Astronaut Candidates Graduate at Embry-Riddle Through Project PoSSUM

Elon Musk teases future plans at TED

NASA spacesuits over budget, tight on timeline: audit

AGU journal commentaries highlight importance of Earth and space science research

TIME AND SPACE
India to launch GSAT-9 communication satellite on May 5: ISRO

SpaceX launches classified payload for NRO; 1st Stage returns to LZ-1

India seeks status as a major space power with more satellite launches

New Russian Medium-Class Carrier Rocket Could Compete With SpaceX's Falcon

TIME AND SPACE
How Old are Martian Gullies

Opportunity Nears 'Perseverance Valley'

Engineers investigate simple, no-bake recipe to make bricks on Mars

SwRI-led team discovers lull in Mars' giant impact history

TIME AND SPACE
China to conduct several manned space flights around 2020

China's cargo spacecraft completes in-orbit refueling

China courts international coalition set up to promote space cooperation

Commentary: Innovation drives China's space exploration

TIME AND SPACE
ViaSat-2 Satellite to Launch on June 1

Arianespace, Intelsat and SKY Perfect JSAT sign a new Launch Services Agreement, for Horizons 3e

ESA boosting its Argentine link with deep space

Airbus and Intelsat team up for more capacity

TIME AND SPACE
Diamond quantum sensor reveals current flows in next-gen materials

System can 3-D print an entire building

Berkeley Lab scientists discover new atomically layered, thin magnet

Augmented reality increases maintenance reliability at a space station

TIME AND SPACE
ISS investigation aims to identify unknown microbes in space

Research Center A Hub For Origins of Life Studies

'Iceball' Planet Discovered Through Microlensing

'On Verge of Most Profound Discovery Ever,' NASA Tells US Congress

TIME AND SPACE
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.