. 24/7 Space News .
STELLAR CHEMISTRY
Study of material surrounding distant stars shows Earth's ingredients 'pretty normal'
by Staff Writers
Washington DC (SPX) Aug 20, 2018

Artists impression of white dwarf star (on right) showing dust disc, and surrounding planetary bodies

The Earth's building blocks seem to be built from 'pretty normal' ingredients, according to researchers working with the world's most powerful telescopes. Scientists have measured the compositions of 18 different planetary systems from up to 456 light years away and compared them to ours, and found that many elements are present in similar proportions to those found on Earth.

This is amongst the largest examinations to measure the general composition of materials in other planetary systems, and begins to allow scientists to draw more general conclusions on how they are forged, and what this might mean for finding Earth-like bodies elsewhere.

"Most of the building blocks we have looked at in other planetary systems have a composition broadly similar to that of the Earth", said researcher Dr Siyi Xu of the Gemini Observatory in Hawaii, who was presenting the work at the Goldschmidt conference in Boston.

The first planets orbiting other stars were only found in 1992 (this was orbiting a pulsar), since then scientists have been trying to understand whether some of these stars and planets are similar to our own solar system.

"It is difficult to examine these remote bodies directly. Because of the huge distances involved, their nearby star tends to drown out any electromagnetic signal, such as light or radio waves" said Siyi Xu. "So we needed to look at other methods".

Because of this, the team decided to look at how the planetary building blocks affect signals from white dwarf stars. These are stars which have burnt off most of their hydrogen and helium, and shrunk to be very small and dense - it is anticipated that our Sun will become a white dwarf in around 5 billion years.

Dr Xu continued, "White dwarfs' atmospheres are composed of either hydrogen or helium, which give out a pretty clear and clean spectroscopic signal. However, as the star cools, it begins to pull in material from the planets, asteroids, comets and so on which had been orbiting it, with some forming a dust disk, a little like the rings of Saturn.

"As this material approaches the star, it changes how we see the star. This change is measurable because it influences the star's spectroscopic signal, and allows us to identify the type and even the quantity of material surrounding the white dwarf. These measurements can be extremely sensitive, allowing bodies as small as an asteroid to be detected".

The team took measurements using spectrographs on the Keck telescope in Hawaii, the world's largest optical and infrared telescope, and on the Hubble Space Telescope.

Siyi Xu continued, "In this study, we have focused on the sample of white dwarfs with dust disks. We have been able to measure calcium, magnesium, and silicon content in most of these stars, and a few more elements in some stars. We may also have found water in one of the systems, but we have not yet quantified it: it's likely that there will be a lot of water in some of these worlds. For example, we've previously identified one star system, 170 light years away in the constellation Bootes, which was rich in carbon, nitrogen and water, giving a composition similar to that of Halley's Comet. In general though, their composition looks very similar to bulk Earth.

This would mean that the chemical elements, the building blocks of earth are common in other planetary systems. From what we can see, in terms of the presence and proportion of these elements, we're normal, pretty normal. And that means that we can probably expect to find Earth-like planets elsewhere in our Galaxy".

Dr Xu continued "This work is still on-going and the recent data release from the Gaia satellite, which so far has characterized 1.7 billion stars, has revolutionized the field. This means we will understand the white dwarfs a lot better. We hope to determine the chemical compositions of extrasolar planetary material to a much higher precision"

Professor Sara Seager, Professor of Planetary Science at Massachusetts Institute of Technology, is also the deputy science director of the recently-launched TESS (Transiting Exoplanet Survey Satellite) mission, which will search for exoplanets. She said:

"It's astonishing to me that the best way to study exoplanet interiors is by planets ripped apart and absorbed by their white dwarf host star. It is great to see progress in this research area and to have solid evidence that planets with Earth-like compositions are common--fueling our confidence that an Earth-like planet around a very nearby normal star is out there waiting to be found".

Professor Seager was not involved in this research, this is an independent comment.


Related Links
Goldschmidt Conference
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Students digging into data archive spot mysterious X-ray source
Paris (ESA) Aug 13, 2018
An enigmatic X-ray source revealed as part of a data-mining project for high-school students shows unexplored avenues hidden in the vast archive of ESA's XMM-Newton X-ray Observatory. When XMM-Newton was launched in 1999, most students who are finishing high school today were not even born. Yet ESA's almost two-decade old X-ray observatory has many surprises to be explored by the next generation of scientists. A taste of new discoveries was unveiled in a recent collaboration between scientis ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA Administrator Views SLS Progress During First Visit to Marshall

Goonhilly and Spacebit parpace to accelerate commercial space exploration through blockchain technology

NASA Administrator Plans to Meet With Russian Space Agency Chief in Near Future

India to send manned mission to space by 2022: Modi

STELLAR CHEMISTRY
Aerojet Rocketdyne Expands Solid Rocket Motor Center of Excellence at Arkansas Facility

Stennis Begins 5th Series of RS-25 Engine Tests

Student Experiments Soar with Early Morning Launch from Wallops

NASA Administrator Views Progress Building SLS and Orion Hardware

STELLAR CHEMISTRY
Six Things About Opportunity'S Recovery Efforts

The Science Team Continues to Listen for Opportunity as Storm Diminishes

Planet-Encircling Dust Storm of Mars shows signs of slowing

Aerojet Rocketdyne delivers power generator for Mars 2020 Rover

STELLAR CHEMISTRY
China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

China solicits international cooperation experiments on space station

STELLAR CHEMISTRY
ISRO to launch GSAT-32 in Oct 2019 to replace GSAT-6A which went incommunicado days after launch

New Image Gallery For The Planetary Science Archive

'We're at Beginning of New Phase of Utilizing Space For Peaceful Purposes'

NASA invests in concepts for a vibrant future commercial space economy

STELLAR CHEMISTRY
Wearable 'microbrewery' saves human body from radiation damage

Scientists develop way to supercool liquids without freezing them

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again

PhD student develops spinning heat shield for future spacecraft

STELLAR CHEMISTRY
Scientists discovered organic acid in a protoplanetary disk

Impact of a stellar intruder on our solar system

Iron and titanium in the atmosphere of exoplanet orbiting KELT-9

Ultrahot planets have starlike atmospheres

STELLAR CHEMISTRY
Study helps solve mystery under Jupiter's coloured bands

Million fold increase in the power of waves near Jupiter's moon Ganymede

New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.