. 24/7 Space News .
ICE WORLD
Study finds limit on evaporation to ice sheets, but that may change
by Staff Writers
Corvallis OR (SPX) May 05, 2016


David Noone in a snow pit that reveals layers of snow that pile up one after another as different snow storms pass Summit Station, Greenland. Dark and light layering gives evidence of evaporation and refreezing of water vapor. Image courtesy Oregon State University. For a larger version of this image please go here.

Although the coastal regions of the Greenland Ice Sheet are experiencing rapid melting, a significant portion of the interior of that ice sheet has remained stable - but a new study suggests that stability may not continue.

Researchers found that very little of the snow and ice on the vast interior of the ice sheet is lost to the atmosphere through evaporation because of a strong thermal "lid" that essentially traps the moisture and returns it to the surface where it refreezes.

However, there are signs that this lid is becoming leaky as global temperatures increase. The researchers say there may be a threshold at which warming becomes sufficient to turn on a switch that will destabilize the snow surface.

Results of the study, which was funded by the National Science Foundation, are being published in Science Advances. New measurements from a research tower atop the Greenland ice sheet helped uncovered the mystery of how much snow piles up on this ice sheet.

"Normally, the air temperature goes down as you climb, but near the surface in Greenland, it gets warmer," said David Noone, an Oregon State University professor who is an atmospheric scientist and principal investigator on the study. "The surface is very cold, but it can be as much as 20 degrees warmer just 30 to 40 feet up in the air. It's enough that you can feel the difference between your nose and your toes."

"The temperature difference effectively forms a lid so that there is hardly any evaporation. Warm air likes to rise, but if it is already warmer up above the air is trapped nearer the ground. One consequence is that layers of fog form from water that had recently evaporated. Eventually the small fog water-drops drift back down to the very cold surface where it refreezes onto the ice sheet."

"It's a handy little trick of nature."
Max Berkelhammer, a researcher at the University of Illinois and lead author on the study, said scientists have been aware of "accumulation zones" in high-altitude areas of the ice sheet, but they haven't been comprehensively measured because of the difficulty in analyzing evaporation and condensation over time.

"Instruments capable of doing this are pretty new and while they have been used before on the ice sheet, they have never been able to run during an entire winter," said Berkelhammer, who did his post-doctoral work with Noone when both were at the University of Colorado. "I think at this point we are still the only group who has been able to run this type of instrument for an entire year on top of an ice sheet."

The research aims to better understand how ice cores capture information about past temperatures in Greenland. The snow and ice on Greenland's interior originated from ocean water far to the south and is transported northward by weather systems and storms, and finally falls as snow on the pristine ice sheet.

The researchers are able to track the origins and fate of the water by the ratio of oxygen and hydrogen isotopes in the water.

Variations in the isotope ratios in layers of snow piled up on the ice sheet provide the team a history of Green climate that helps put recent warming into historical context, the researchers say.

To understand past climate, scientists must know how much precipitation fell and how much evaporated. Without the team's analysis, what fraction of falling snow accumulates and what fraction evaporates was difficult to determine. When they began to explore evaporation rates, they discovered this unique thermal lid, which effectively "recycles" water back onto the Greenland Ice Sheet.

This finding will allow previous estimates of Greenland's past water balance to be re-evaluated.

"When thinking about climate change, one often thinks about rising global temperatures," Noone said. "However in Greenland, as like here in Oregon, climate change is also a story of the changing water cycle and how we lose water because evaporation rates are increasing.

"Climate models suggest that as temperatures increase, more precipitation may actually fall in Greenland because warmer air can hold more water. Taken by itself, that could indicate that parts of the ice sheet may grow. However, if the lid becomes increasingly leaky, the evaporation process has become more effective and moisture will escape to the atmosphere.

"The fate of the ice sheet is in the balance," Noone said. "It becomes a question of which influence is stronger."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oregon State University
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
Extreme weather linked to high pressure over Greenland
Sheffield UK (SPX) May 03, 2016
Greenland is one of the fastest-warming regions of the world, according to climate change experts at the University of Sheffield. New research, led by Professor Edward Hanna from the University's Department of Geography, has identified changes in weather systems over Greenland that have dragged unusually warm air up over the western flank of Greenland's Ice Sheet. These weather systems are ... read more


ICE WORLD
First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

ICE WORLD
Opportunity completes mini-walkabout

Curiosity Mars Rover crosses rugged plateau

Mars' surface revealed in unprecedented detail

Space X's Red Dragons to start Mars exploration in 2018

ICE WORLD
US to move more assets into deep space over next 4 years

Simulators give astronauts glimpse of future flights

When technology bites back

Menstruation in spaceflight: Options for astronauts

ICE WORLD
China can meet Chile's satellite needs: ambassador

China launches Kunpeng-1B sounding rocket

South China city gears up for satellite tourism

China's long march into space

ICE WORLD
Russia delays space crew's return to Earth

15 years of Europe on the International Space Station

US-Russia Space Projects Set Example of Good Cooperation

Russia, US discuss boosting efficiency of cooperation at ISS

ICE WORLD
Vector Space Systems aims to redefine space commerce

Spaceport Camden Partners with NASA Innovation Competition

SpaceX vows to send capsule to Mars by 2018

Russia May Launch Upgraded Proton-M Rocket on May28

ICE WORLD
On the Road to Finding Other Earths

Kepler spacecraft recovered and returned to the K2 Mission

Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

ICE WORLD
Exploring phosphorene, a promising new material

It takes more than peer pressure to make large microgels fit in

Folding molecules into screw-shaped structures

Augmented games can increase the diversity of sports









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.