. 24/7 Space News .
STELLAR CHEMISTRY
Lithium mostly comes from supernovas
by Staff Writers
Granada, Spain (SPX) Nov 04, 2016


Artist concept of a binary system similar to the one that originated the nova Sagittarii 2015 N.2. Image courtesy David A. Hardy y PPARC.

Lithium, the lightest solid element in existence, plays an important role in our lives, both at the biological and the technological level. Like the majority of chemical elements, its origins stem back to astrophysical phenomena, but its point of genesis was so far unclear. Recently, a group of researchers detected enormous quantities of beryllium-7 -an unstable element which decays into lithium in 53.2 days- inside nova Sagittarii 2015 N.2, which suggests that novae are the main source of lithium in the galaxy.

Practically every chemical element has an astronomical origin. A first genesis took place in what is known as primordial nucleosynthesis, shortly after the Big Bang (between ten seconds and twenty minutes after). Light elements were then formed: hydrogen (75%), helium (25%) and a very small amount of lithium and beryllium.

The remaining chemical elements were formed in stars, either through fusion of other elements inside the nucleus -which begins with the fusion of hydrogen into helium and produces increasingly heavy elements until iron is reached- or through other processes such as supernovae explosions or reactions in the atmosphere of giant stars where, among others, gold, lead and copper are produced. Those elements in turn were then recycled into new stars and planets until the present day.

"But lithium posed a problem: we knew that 25% of existing lithium comes from primordial nucleosynthesis, but we were not able to trace the origins of the remaining 75%", says Luca Izzo, researcher at the Institute of Astrophysics of Andalusia (IAA-CSIC) involved in the study.

Solution To The Lithium Enigma
The solution to the enigma of the origin of lithium lies, according to this study, in the novae, explosive phenomena occurring in binary star systems in which one of the stars is a white dwarf. The white dwarf can nab material from its twin star and form a superficial layer of hydrogen which, when it reaches a certain density, will trigger an explosion -a nova- which can increase the brightness of a star up to one hundred thousand times. After a few weeks the system stabilizes and the process starts again.

The researchers studied nova Sagittarii 1015 N.2 (also known as V5668 Sgr), which was detected on March 15th, 2015, and remained visible for more than eighty days. The observation, made with the UVES instrument of the Very Large Telescope (ESO) in the course of twenty four days, made it possible for the first time to follow the evolution of the beryllium-7 signal inside a nova and even to calculate the amount of it present.

Beryllium-7 is an unstable element which decays into lithium in 53.2 days, so its presence is an unequivocal sign of the existence of lithium", says Christina Thone, researcher at the Institute of Astrophysics of Andalusia (IAA-CSIC).

The existence of beryllium-7 had been previously documented in another nova, but the measure of the amount of lithium which would be ultimately produced from it on nova Sagittarii 1015 N.2 came as a surprise.

"We're talking about an amount of lithium ten times greater than that in the Sun," says Luca Izzo (IAA-CSIC). "With these amounts in mind, two similar novae a year would suffice to account for all the lithium in our galaxy, the Milky Way. Novae seem to be the predominant source of lithium in the universe," he concludes.

References; P. Molaro, L. Izzo et al. "Highly Enriched 7Be in the ejecta of Nova Sagittarii 2015 No. 2 (V5668 Sgr) and the Galactic 7Li origin". Monthly Notices of the Royal Astronomical Society, Vol. 463


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Institute of Astrophysics of Andalusia
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Pillars of destruction
Munich, Germany (SPX) Nov 04, 2016
The spires and pillars in the new images of the Carina Nebula are vast clouds of dust and gas within a hub of star formation about 7500 light-years away. The pillars in the nebula were observed by a team led by Anna McLeod, a PhD student at ESO, using the MUSE instrument on ESO's Very Large Telescope. The great power of MUSE is that it creates thousands of images of the nebula at the same ... read more


STELLAR CHEMISTRY
BRICS Space Agencies Sign Memorandum on Cooperation in Space Exploration

Next stop Baikonur for ESA astronaut Thomas Pesquet

Japan rocket with manga art launches satellite into space

Clearing the Air in Space

STELLAR CHEMISTRY
Aerojet Rocketdyne completes CST launch abort engine hot fire tests

China launches first heavy-lift rocket

NASA Uses Tunnel Approach to Study How Heat Affects SLS Rocket

SpaceX Aims to Resume Falcon 9 Flights in 2016, Blames Helium Tank for Explosion

STELLAR CHEMISTRY
Unusual Martian region leaves clues to planet's past

A record of ancient tectonic stress on Mars

Mars: How Will Humans Get There

Curiosity Mars Rover Checks Odd-looking Iron Meteorite

STELLAR CHEMISTRY
Kuaizhou-1 scheduled to launch in December

Nations ask to play part in space lab

China launches first heavy-lift rocket

China to launch Long March-5 carrier rocket in November

STELLAR CHEMISTRY
Optus achieves full certification of 4 teleports

ISRO's World record bid: Launching 83 satellites on single rocket

Shared vision and goals for the future of Europe in space

SSL delivers Sky Perfect JSAT satellite to Kourou

STELLAR CHEMISTRY
Testing AsiaSat 9 in a Simulated Space Environment

3-D-printed permanent magnets outperform conventional versions, conserve rare materials

Researchers bring eyewear-free 3-D capabilities to small screen

When it comes to atomic-scale manufacturing, less really is more

STELLAR CHEMISTRY
What happens to a pathogenic fungus grown in space?

How Planets Like Jupiter Form

Giant Rings Around Exoplanet Turn in the Wrong Direction

Preferentially Earth-sized Planets with Lots of Water

STELLAR CHEMISTRY
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.